
Takemasa Sakaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4193344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 2022, 602, 300-306.	13.7	428
2	Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of newcastle disease virus. Virology, 1987, 158, 242-247.	1.1	239
3	Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. American Journal of Infection Control, 2021, 49, 299-301.	1.1	191
4	The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus Journal of Cell Biology, 1996, 133, 733-747.	2.3	187
5	The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5000-5005.	3.3	166
6	Newcastle disease virus evolution. Virology, 1989, 169, 273-282.	1.1	165
7	Paramyxovirus assembly and budding: Building particles that transmit infections. International Journal of Biochemistry and Cell Biology, 2010, 42, 1416-1429.	1.2	151
8	Newcastle disease virus evolution. Virology, 1989, 169, 260-272.	1.1	139
9	Inactivation of Pathogenic Viruses by Plant-Derived Tannins: Strong Effects of Extracts from Persimmon (Diospyros kaki) on a Broad Range of Viruses. PLoS ONE, 2013, 8, e55343.	1.1	101
10	AIP1/Alix Is a Binding Partner of Sendai Virus C Protein and Facilitates Virus Budding. Journal of Virology, 2005, 79, 8933-8941.	1.5	77
11	Paramyxovirus Sendai virus-like particle formation by expression of multiple viral proteins and acceleration of its release by C protein. Virology, 2004, 325, 1-10.	1.1	76
12	The YLDL Sequence within Sendai Virus M Protein Is Critical for Budding of Virus-Like Particles and Interacts with Alix/AIP1 Independently of C Protein. Journal of Virology, 2007, 81, 2263-2273.	1.5	65
13	Allograft transduction of IL-10 prolongs survival following orthotopic liver transplantation. Gene Therapy, 1999, 6, 816-822.	2.3	64
14	Inhibition of Interferon Regulatory Factor 3 Activation by Paramyxovirus V Protein. Journal of Virology, 2012, 86, 7136-7145.	1.5	56
15	Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology, 1992, 190, 278-287.	1.1	54
16	Structural features unique to each of the three antigenic sites on the hemagglutinin-neuraminidase protein of newcastle disease virus. Virology, 1988, 163, 174-182.	1.1	51
17	Immediate protection of mice from lethal wild-type Sendai virus (HVJ) infections by a temperature-sensitive mutant, HVJpi, possessing homologous interfering capacity. Virology, 1990, 177, 65-74.	1.1	51
18	Identification of endoprotease activity in the trans Golgi membranes of rat liver cells that specifically processes in vitro the fusion glycoprotein precursor of virulent newcastle disease virus. Virology, 1991, 184, 504-512.	1.1	51

TAKEMASA SAKAGUCHI

#	Article	IF	CITATIONS
19	Involvement of the Zinc-Binding Capacity of Sendai Virus V Protein in Viral Pathogenesis. Journal of Virology, 2000, 74, 7834-7841.	1.5	47
20	Characterization of the Amino Acid Residues of Sendai Virus C Protein That Are Critically Involved in Its Interferon Antagonism and RNA Synthesis Down-Regulation. Journal of Virology, 2004, 78, 7443-7454.	1.5	47
21	Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles. Virology, 2008, 371, 108-120.	1.1	44
22	Entry Inhibition of Influenza Viruses with High Mannose Binding Lectin ESA-2 from the Red Alga Eucheuma serra through the Recognition of Viral Hemagglutinin. Marine Drugs, 2015, 13, 3454-3465.	2.2	41
23	Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS ONE, 2018, 13, e0197664.	1.1	40
24	Persistent and Stable Gene Expression by a Cytoplasmic RNA Replicon Based on a Noncytopathic Variant Sendai Virus. Journal of Biological Chemistry, 2007, 282, 27383-27391.	1.6	39
25	Effect of intermittent irradiation and fluence-response of 222 nm ultraviolet light on SARS-CoV-2 contamination. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102184.	1.3	39
26	Paramyxovirus Sendai virus C proteins are essential for maintenance of negative-sense RNA genome in virus particles. Virology, 2008, 374, 495-505.	1.1	34
27	The Genome Nucleotide Sequence of a Contemporary Wild Strain of Measles Virus and Its Comparison with the Classical Edmonston Strain Genome. Virology, 1999, 256, 340-350.	1.1	32
28	Paramyxovirus Sendai virus V protein counteracts innate virus clearance through IRF-3 activation, but not via interferon, in mice. Virology, 2007, 359, 82-91.	1.1	29
29	Optineurin with amyotrophic lateral sclerosis-related mutations abrogates inhibition of interferon regulatory factor-3 activation. Neuroscience Letters, 2011, 505, 279-281.	1.0	29
30	Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein. Journal of Virology, 2015, 89, 11487-11499.	1.5	29
31	High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Clycoprotein gp120. Marine Biotechnology, 2016, 18, 144-160.	1.1	29
32	Molecular characterization and the mutation pattern of SARS-CoV-2 during first and second wave outbreaks in Hiroshima, Japan. PLoS ONE, 2021, 16, e0246383.	1.1	29
33	Conserved and non-conserved regions in the Sendai virus genome: evolution of a gene possessing overlapping reading frames. Virus Genes, 2001, 22, 47-52.	0.7	28
34	The Association between Wearing a Mask and COVID-19. International Journal of Environmental Research and Public Health, 2021, 18, 9131.	1.2	28
35	Double-Layered Membrane Vesicles Released from Mammalian Cells Infected with Sendai Virus Expressing the Matrix Protein of Vesicular Stomatitis Virus. Virology, 1999, 263, 230-243.	1.1	27
36	Comparison of Substrate Specificities against the Fusion Glycoprotein of Virulent Newcastle Disease Virus between a Chick Embryo Fibroblast Processing Protease and Mammalian Subtilisin‣ike Proteases. Microbiology and Immunology, 1999, 43, 133-140.	0.7	27

TAKEMASA SAKAGUCHI

#	Article	IF	CITATIONS
37	Phosphorylation of the Sendai Virus M Protein Is Not Essential for Virus Replication Eitherin Vitroorin Vivo. Virology, 1997, 235, 360-366.	1.1	26
38	Cellâ€ 5 pecific Inhibition of Paramyxovirus Maturation by Proteasome Inhibitors. Microbiology and Immunology, 2005, 49, 835-844.	0.7	26
39	Mutational Analysis of the Sendai Virus V Protein: Importance of the Conserved Residues for Zn Binding, Virus Pathogenesis, and Efficient RNA Editing. Virology, 2002, 299, 172-181.	1.1	24
40	A Single Amino Acid Substitution within the Paramyxovirus Sendai Virus Nucleoprotein Is a Critical Determinant for Production of Interferon-Beta-Inducing Copyback-Type Defective Interfering Genomes. Journal of Virology, 2018, 92, .	1.5	24
41	Inactivation of human and avian influenza viruses by potassium oleate of natural soap component through exothermic interaction. PLoS ONE, 2018, 13, e0204908.	1.1	24
42	Oncolytic vesicular stomatitis virus administered by isolated limb perfusion suppresses osteosarcoma growth. Journal of Orthopaedic Research, 2011, 29, 795-800.	1.2	22
43	A field isolate of Sendai virus: its high virulence to mice and genetic divergence from prototype strains. Archives of Virology, 1994, 135, 159-164.	0.9	21
44	Inhibiting SARS-CoV-2 infection in vitro by suppressing its receptor, angiotensin-converting enzyme 2, via aryl-hydrocarbon receptor signal. Scientific Reports, 2021, 11, 16629.	1.6	21
45	Gene Delivery of Paraoxonase-1 Inhibits Neointimal Hyperplasia after Arterial Balloon-Injury in Rabbits Fed a High-Fat Diet. Hypertension Research, 2007, 30, 85-91.	1.5	20
46	Antimicrobial action from a novel porphyrin derivative in photodynamic antimicrobial chemotherapy in vitro. Lasers in Medical Science, 2015, 30, 383-387.	1.0	20
47	Ethanol Susceptibility of SARS-CoV-2 and Other Enveloped Viruses. Biocontrol Science, 2021, 26, 177-180.	0.2	19
48	Conserved Charged Amino Acids within Sendai Virus C Protein Play Multiple Roles in the Evasion of Innate Immune Responses. PLoS ONE, 2010, 5, e10719.	1.1	19
49	Involvement of the Leader Sequence in Sendai Virus Pathogenesis Revealed by Recovery of a Pathogenic Field Isolate from cDNA. Journal of Virology, 2002, 76, 8540-8547.	1.5	18
50	Sendai Virus C Proteins Regulate Viral Genome and Antigenome Synthesis To Dictate the Negative Genome Polarity. Journal of Virology, 2014, 88, 690-698.	1.5	18
51	Significance of the YLDL motif in the M protein and Alix/AIP1 for Sendai virus budding in the context of virus infection. Virology, 2010, 405, 334-341.	1.1	16
52	The potential of recombinant vesicular stomatitis virus-mediated virotherapy against metastatic colon cancer. International Journal of Molecular Medicine, 2013, 31, 299-306.	1.8	16
53	IFN-β-inducing, unusual viral RNA species produced by paramyxovirus infection accumulated into distinct cytoplasmic structures in an RNA-type-dependent manner. Frontiers in Microbiology, 2015, 6, 804.	1.5	15
54	Antifungal efficacy of photodynamic therapy with TONS 504 for pathogenic filamentous fungi. Lasers in Medical Science, 2019, 34, 743-747.	1.0	15

TAKEMASA SAKAGUCHI

#	Article	IF	CITATIONS
55	Generation of Sendai virus nucleocapsid-like particles in yeast. Virus Research, 2005, 108, 221-224.	1.1	14
56	Analysis of interaction of Sendai virus V protein and melanoma differentiation-associated gene 5. Microbiology and Immunology, 2011, 55, 760-767.	0.7	14
57	Time-dependent antimicrobial effect of photodynamic therapy with TONS 504 on Pseudomonas aeruginosa. Lasers in Medical Science, 2018, 33, 1455-1460.	1.0	14
58	Inactivation of acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy. Molecular Vision, 2015, 21, 532-7.	1.1	14
59	Mass Screening of SARS-CoV-2 Variants using Sanger Sequencing Strategy in Hiroshima, Japan. Scientific Reports, 2022, 12, 2419.	1.6	13
60	Endoproteolytic activation of newcastle disease virus fusion proteins requires an intracellular acidic environment. Virology, 1989, 170, 571-574.	1.1	12
61	Nonstructural protein p39 of feline calicivirus suppresses host innate immune response by preventing IRF-3 activation. Veterinary Microbiology, 2016, 185, 62-67.	0.8	12
62	Prolyl isomerase Pin1 plays an essential role in SARS-CoV-2 proliferation, indicating its possibility as a novel therapeutic target. Scientific Reports, 2021, 11, 18581.	1.6	12
63	Attenuation of a field Sendai virus isolate through egg-passages is associated with an impediment of viral genome replication in mouse respiratory cells. Archives of Virology, 2001, 146, 893-908.	0.9	11
64	Studies on the paramyxovirus accessory genes by reverse genetics in the Sendai virus-mouse system. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2008, 84, 439-451.	1.6	11
65	Antimicrobial Photodynamic Therapy with the photosensitizer TONS504 eradicates Acanthamoeba. Photodiagnosis and Photodynamic Therapy, 2019, 28, 166-171.	1.3	11
66	Alteration of Sendai Virus Morphogenesis and Nucleocapsid Incorporation due to Mutation of Cysteine Residues of the Matrix Protein. Journal of Virology, 2002, 76, 1682-1690.	1.5	9
67	Clustered Basic Amino Acids of the Small Sendai Virus C Protein Y1 Are Critical to Its Ran GTPase-Mediated Nuclear Localization. PLoS ONE, 2013, 8, e73740.	1.1	9
68	Effects of Traditional Kampo Drugs and Their Constituent Crude Drugs on Influenza Virus Replication <i>In Vitro</i> : Suppression of Viral Protein Synthesis by Glycyrrhizae Radix. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-12.	0.5	9
69	Identification of mutations associated with attenuation of virulence of a field Sendai virus isolate by egg passage. Virus Genes, 2002, 25, 189-193.	0.7	8
70	Efficacy of Photodynamic Antiâ€Microbial Chemotherapy for <i>Acanthamoeba</i> Keratitis In Vivo. Lasers in Surgery and Medicine, 2021, 53, 695-702.	1.1	8
71	Exopolysaccharide Produced by Plant-Derived <i>Lactobacillus plantarum</i> SN35N Exhibits Antiviral Activity. Biological and Pharmaceutical Bulletin, 2021, 44, 1886-1890.	0.6	8
72	Contribution of the leader sequence to homologous viral interference among Sendai virus strains. Virology, 2008, 372, 64-71.	1.1	7

#	Article	IF	CITATIONS
73	High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120. Marine Biotechnology, 2016, 18, 215-231.	1.1	7
74	Structural analysis of the STAT1:STAT2 heterodimer revealed the mechanism of Sendai virus C protein–mediated blockade of type 1 interferon signaling. Journal of Biological Chemistry, 2017, 292, 19752-19766.	1.6	7
75	Duration of infectious virus shedding in patients with severe coronavirus disease 2019 who required mechanical ventilation. Journal of Infection and Chemotherapy, 2022, 28, 19-23.	0.8	7
76	In vitro Suppression of SARS-CoV-2 Infection by Existing Kampo Formulas and Crude Constituent Drugs Used for Treatment of Common Cold Respiratory Symptoms. Frontiers in Pharmacology, 2022, 13, 804103.	1.6	7
77	Decreased Expression in Nuclear Factor-κB Essential Modulator Due to a Novel Splice-Site Mutation Causes X-linked Ectodermal Dysplasia with Immunodeficiency. Journal of Clinical Immunology, 2011, 31, 762-772.	2.0	6
78	Airborne virus detection by a sensing system using a disposable integrated impaction device. Journal of Breath Research, 2016, 10, 036009.	1.5	6
79	Structural Insight into the Interaction of Sendai Virus C Protein with Alix To Stimulate Viral Budding. Journal of Virology, 2021, 95, e0081521.	1.5	6
80	Adenovirus-mediated allograft transduction of interleukin-10: role in the induction phase of liver allograft acceptance. Transplantation Proceedings, 2000, 32, 247-248.	0.3	5
81	Augmentation of local antitumor immunity in liver by interleukin-2 gene transfer via portal vein. Cancer Gene Therapy, 2002, 9, 655-664.	2.2	5
82	Masking of the contribution of V protein to sendai virus pathogenesis in an infection model with a highly virulent field isolate. Virology, 2003, 313, 581-587.	1.1	5
83	Metastatic tumor cells detection and antiâ€metastatic potential with vesicular stomatitis virus in immunocompetent murine model of osteosarcoma. Journal of Orthopaedic Research, 2018, 36, 2562-2569.	1.2	5
84	Novel Nearâ€Infrared Fluorescenceâ€Guided Surgery With Vesicular Stomatitis Virus for Complete Surgical Resection of Osteosarcomas in Mice. Journal of Orthopaedic Research, 2019, 37, 1192-1201.	1.2	5
85	Sequential dynamics of virological and serological changes in the serum of SARSâ€CoVâ€2 infected patients. Journal of Medical Virology, 2022, 94, 1734-1737.	2.5	5
86	Passage of a Sendai Virus Recombinant in Embryonated Chicken Eggs Leads to Markedly Rapid Accumulation of U-to-C Transitions in a Limited Region of the Viral Genome. PLoS ONE, 2012, 7, e49968.	1.1	4
87	Eligibility of Feline Calicivirus for a Surrogate of Human Norovirus in Comparison with Murine Norovirus, Poliovirus and Coxsackievirus. Biocontrol Science, 2018, 23, 145-149.	0.2	4
88	Molecular characteristics of the photosensitizer TONS504: Comparison of its singlet oxygen quantum yields and photodynamic antimicrobial effect with those of methylene blue. Journal of Photochemistry and Photobiology B: Biology, 2021, 221, 112239.	1.7	4
89	EMERGENCE OF ANTI-INFLAMMATORY MONOCYTES IN LONG-TERM SURVIVING HOSTS OF IL-10-TRANSDUCED LIVER ALLOGRAFTS. Cytokine, 2001, 13, 183-187.	1.4	3

90 Paramyxovirus Budding Mechanisms. , 2011, , 193-218.

#	Article	IF	CITATIONS
91	Development of an Oncolytic Recombinant Vesicular Stomatitis Virus Encoding a Tumor-suppressor MicroRNA. Anticancer Research, 2020, 40, 6319-6325.	0.5	1
92	Duration of infectious viral shedding in patients with mild to moderate COVID-19 treated with REGN-CoV2. Journal of Infection and Chemotherapy, 2022, , .	0.8	1
93	Crystal structure of <i>O</i> â€ureidoserine racemase found in the <scp>d</scp> â€cycloserine biosynthetic pathway. Proteins: Structure, Function and Bioinformatics, 2022, 90, 912-918.	1.5	1
94	Adenovirus-mediated interleukin-10 overexpression: comparison between intraportal and intramuscular gene transfer. Transplantation Proceedings, 2000, 32, 2006.	0.3	0
95	Catalytic mechanism of <scp>DcsB</scp> : Arginase framework used for hydrolyzing its inhibitor. Protein Science, 2022, 31, .	3.1	0
96	Complex formation of potassium salt of highly fatty acid with hemagglutinin protein in influenza virus via exothermic interaction. Biochemistry and Biophysics Reports, 2022, 31, 101302.	0.7	0