Manuel Alcami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4193021/publications.pdf

Version: 2024-02-01

94433 118850 5,079 187 37 62 citations h-index g-index papers 194 194 194 5216 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Advanced Materials, 2016, 28, 6332-6336.	21.0	444
2	Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chemistry, 2010, 2, 374-379.	13.6	273
3	Computational chemistry: A useful (sometimes mandatory) tool in mass spectrometry studies. Mass Spectrometry Reviews, 2001, 20, 195-245.	5.4	160
4	Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nature Physics, 2013, 9, 368-374.	16.7	158
5	Role of Dispersion Forces in the Structure of Graphene Monolayers on Ru Surfaces. Physical Review Letters, 2011, 106, 186102.	7.8	129
6	Cu+ binding energies. Dramatic failure of the G2 method vs. good performance of the B3LYP approach. Chemical Physics Letters, 2000, 320, 129-138.	2.6	93
7	Atomically resolved phase transition of fullerene cations solvated in helium droplets. Nature Communications, 2016, 7, 13550.	12.8	84
8	Theoretical study of ionization potentials and dissociation energies of Cnq+ fullerenes (n=50–60,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
9	Modeling the Interactions between Peptide Functions and Cu(I): Formamideâ^'Cu+ Reactions in the Gas Phase. Journal of the American Chemical Society, 1998, 120, 5411-5426.	13.7	75
10	Dynamics of Glycine Dications in the Gas Phase: Ultrafast Intramolecular Hydrogen Migration versus Coulomb Repulsion. Journal of Physical Chemistry Letters, 2013, 4, 3903-3909.	4.6	74
11	Crossover Siteâ€Selectivity in the Adsorption of the Fullerene Derivative PCBM on Au(111). Angewandte Chemie - International Edition, 2007, 46, 7874-7877.	13.8	70
12	Gas-Phase Deprotonation of Uracilâ^'Cu2+ and Thiouracilâ^'Cu2+ Complexes. Journal of Physical Chemistry A, 2006, 110, 1943-1950.	2.5	69
13	Bond activation by protonation in the gas phase. Chemical Physics Letters, 1990, 172, 471-477.	2.6	68
14	Structures, Energetics, and Dynamics of Helium Adsorbed on Isolated Fullerene Ions. Physical Review Letters, 2012, 108, 076101.	7.8	68
15	Are the Thiouracils Sulfur Bases in the Gas-phase?. Journal of Physical Chemistry A, 2000, 104, 5122-5130.	2.5	66
16	Association of Cu2+with Uracil and Its Thio Derivatives: A Theoretical Study. ChemPhysChem, 2004, 5, 1871-1878.	2.1	66
17	Unimolecular Reactivity of Uracil–Cu2+ Complexes in the Gas Phase. ChemPhysChem, 2007, 8, 181-187.	2.1	64
18	Ultrafast Nonadiabatic Fragmentation Dynamics of Doubly Charged Uracil in a Gas Phase. Physical Review Letters, 2011, 107, 023202.	7.8	63

#	Article	IF	CITATIONS
19	Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions. Journal of Physical Chemistry Letters, 2015, 6, 1536-1542 Formations of Dumbbell minimath xmins:mmi="http://www.w3.org/1998/Math/MathML"	4.6	62
20	display="inline"> <mml:msub><mml:mi mathvariant="bold">C</mml:mi><mml:mn>118</mml:mn></mml:msub> and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">C</mml:mi><mml:mi>119</mml:mi></mml:msub></mml:math> inside Clusters	7.8	61
21	of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:m 15,="" 174-186.<="" 2002,="" acidities.="" and="" basicities="" chemistry,="" intrinsic="" journal="" modeling="" of="" organic="" physical="" td=""><td>1.9</td><td>57</td></mml:m></mml:msub></mml:math>	1.9	57
22	Fullerene C50: Sphericity takes over, not strain. Chemical Physics Letters, 2005, 407, 153-158.	2.6	56
23	G2ab initio calculations on three-membered rings: Role of hydrogen atoms. Journal of Computational Chemistry, 1998, 19, 1072-1086.	3.3	55
24	Coulomb Stability Limit of Highly ChargedC60q+Fullerenes. Physical Review Letters, 2005, 95, 013401.	7.8	55
25	The performance of density-functional theory in challenging cases: Halogen oxides. Journal of Chemical Physics, 2000, 112, 6131-6140.	3.0	49
26	A molecular orbital study of azole-lithium(1+) complexes. The Journal of Physical Chemistry, 1989, 93, 3929-3936.	2.9	47
27	Gas-Phase Reactivity of Uracil, 2-Thiouracil, 4-Thiouracil, and 2,4-Dithiouracil towards the Cu+ Cation: A DFT Study. ChemPhysChem, 2003, 4, 1011-1016.	2.1	45
28	Fragmentation of Highly Excited Small Neutral Carbon Clusters. Physical Review Letters, 2004, 93, 063401.	7.8	45
29	Adsorption of Hydrogen Molecules on Carbon Nanotubes Using Quantum Chemistry and Molecular Dynamics. Journal of Physical Chemistry A, 2016, 120, 6451-6458.	2.5	45
30	A Multicoincidence Study of Fragmentation Dynamics in Collision of γâ€Aminobutyric Acid with Lowâ€Energy Ions. Chemistry - A European Journal, 2012, 18, 9321-9332.	3.3	44
31	Structure and Electronic Properties of Fullerenes C52q+: Is C522+an Exception to the Pentagon Adjacency Penalty Rule?. ChemPhysChem, 2005, 6, 92-100.	2.1	43
32	Surfaceâ€Supported Robust 2D Lanthanideâ€Carboxylate Coordination Networks. Small, 2015, 11, 6358-6364.	10.0	43
33	Structure and electronic properties of highly charged C60 and C58 fullerenes. Journal of Chemical Physics, 2005, 123, 184306.	3.0	41
34	Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers. Nature Chemistry, 2015, 7, 927-934.	13.6	41
35	Experimental and theoretical study of lithium(1+) affinities of methyldiazoles. The Journal of Physical Chemistry, 1990, 94, 4796-4804.	2.9	39
36	Stable Nonâ€IPR C ₆₀ and C ₇₀ Fullerenes Containing a Uniform Distribution of Pyrenes and Adjacent Pentagons. ChemPhysChem, 2008, 9, 861-866.	2.1	39

#	Article	IF	CITATIONS
37	Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions. Physical Review Letters, 2016, 117, 073201.	7.8	39
38	Role of Cu+Association on the Formamide ât' Formamidic Acid ât' (Aminohydroxy)carbene Isomerizations in the Gas Phase. Journal of Physical Chemistry A, 1998, 102, 4652-4659.	2.5	38
39	Enhanced Li+ binding energies of some azines: a molecular orbital study. Theoretica Chimica Acta, 1990, 77, 1-15.	0.8	36
40	Internal energy dependence in x-ray-induced molecular fragmentation: An experimental and theoretical study of thiophene. Physical Review A, $2015, 91, \ldots$	2.5	36
41	Key Structural Motifs To Predict the Cage Topology in Endohedral Metallofullerenes. Journal of the American Chemical Society, 2016, 138, 1551-1560.	13.7	36
42	Relative Stability of Empty Exohedral Fullerenes: π Delocalization versus Strain and Steric Hindrance. Journal of the American Chemical Society, 2017, 139, 1609-1617.	13.7	36
43	Nitrogen inversion barriers in three-membered rings. Anab initiomolecular orbital study. Journal of Computational Chemistry, 1989, 10, 468-478.	3.3	35
44	Lattice-matched versus lattice-mismatched models to describe epitaxial monolayer graphene on Ru(0001). Physical Review B, 2013, 88, .	3.2	35
45	Elastic Response of Graphene Nanodomes. ACS Nano, 2013, 7, 2927-2934.	14.6	35
46	Stabilization of nitrogen-containing three-membered rings by proton and lithium ion association in the gas phase. Journal of the American Chemical Society, 1993, 115, 11074-11083.	13.7	34
47	Statistical fragmentation of small neutral carbon clusters. Physical Review A, 2005, 71, .	2.5	34
48	Electron localization in epitaxial graphene on Ru(0001) determined by moir \tilde{A} © corrugation. Physical Review B, 2012, 85, .	3.2	34
49	Ultrafast Damage Following Radiationâ€Induced Oxidation of Uracil in Aqueous Solution. Angewandte Chemie - International Edition, 2013, 52, 3160-3163.	13.8	34
50	Non-statistical fragmentation of PAHs and fullerenes in collisions with atoms. International Journal of Mass Spectrometry, 2014, 365-366, 260-265.	1.5	34
51	Roadmap on dynamics of molecules and clusters in the gas phase. European Physical Journal D, 2021, 75, 1.	1.3	32
52	Structure, Dissociation Energies, and Harmonic Frequencies of Small Doubly Charged Carbon Clusters Cn2+(n= 3â^'9)â€. Journal of Physical Chemistry A, 2002, 106, 10782-10789.	2.5	31
53	Absolute Charge Transfer and Fragmentation Cross Sections inHe2+â^'C60Collisions. Physical Review Letters, 2008, 100, 183401.	7.8	31
54	Theoretical investigation of the ultrafast dissociation of ionised biomolecules immersed in water: Direct and indirect effects. Mutation Research - Reviews in Mutation Research, 2010, 704, 45-53.	5 . 5	31

#	Article	IF	CITATIONS
55	Multiple ionization and hydrogen loss from neutral and positively-charged coronene. Journal of Chemical Physics, 2014, 140, 204307.	3.0	31
56	First- and second-electron affinities of C60 and C70 isomers. Physical Review A, 2007, 76, .	2.5	30
57	A density functional theory study of the manganese-phthalocyanine. Theoretical Chemistry Accounts, 2011, 128, 497-503.	1.4	30
58	Ionization potentials and dissociation energies of neutral, singly and doubly charged Cn fullerenes from n=20 to 70. International Journal of Mass Spectrometry, 2006, 252, 133-141.	1.5	29
59	Unusual hydroxyl migration in the fragmentation of \hat{l}^2 -alanine dication in the gas phase. Physical Chemistry Chemical Physics, 2015, 17, 16767-16778.	2.8	29
60	Experimental and Theoretical Investigation of the Reactions between Glucose and Cu+ in the Gas Phase. Journal of Physical Chemistry A, 2002, 106, 2641-2651.	2.5	28
61	Magic and hot giant fullerenes formed inside ion irradiated weakly bound C60 clusters. Journal of Chemical Physics, 2010, 133, 104301.	3.0	28
62	Enhanced aluminum(1+) binding energies of some azoles: a theoretical study of azole-X+ (X = Na, K, Al) complexes. The Journal of Physical Chemistry, 1992, 96, 3022-3029.	2.9	27
63	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mm xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mm and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mm< td=""><td>ıl:mn>11</td><td>9<</td></mm<></mml:mrow></mml:msubsup></mml:math </mm </mml:mrow></mml:msubsup></mm </mml:mrow></mml:msubsup>	ıl:mn>11	9<
64	Physical Review A, 2014, 89, Structural Patterns in Fullerenes Showing Adjacent Pentagons: C20 to C72. Journal of Nanoscience and Nanotechnology, 2007, 7, 1329-1338.	0.9	26
65	Cu+ reactivity trends in sp, sp2, and sp3 nitrogen, phosphorus, and arsenic containing bases. International Journal of Mass Spectrometry, 2000, 201, 215-231.	1.5	25
66	Unimolecular Reactivity of Strong Metal–Cation Complexes in the Gas Phase: Ethylenediamine–Cu+. Chemistry - A European Journal, 2004, 10, 2927-2934.	3.3	24
67	Theoretical study of the structure of self-assembled monolayers of short alkylthiolates on Au(111) and Ag(111): the role of induced substrate reconstruction and chain–chain interactions. Physical Chemistry Chemical Physics, 2011, 13, 9353.	2.8	24
68	Probing the Site-Dependent Kondo Response of Nanostructured Graphene with Organic Molecules. Nano Letters, 2014, 14, 4560-4567.	9.1	24
69	Chain-Length and Temperature Dependence of Self-Assembled Monolayers of Alkylthiolates on Au (111) and Ag (111) Surfaces. Journal of Physical Chemistry A, 2014, 118, 4138-4146.	2.5	23
70	Antimonene: Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions (Adv. Mater.) Tj ETQq	0 0 0 rgB 21.0gB	T /Oyerlock 10
71	Exploring the Potential Energy Surface of the Association of Cu+to Oxaziridine, Nitrosomethane, and Formaldoxime. Journal of Physical Chemistry A, 1998, 102, 10120-10127.	2.5	22
72	Basicity of some carbonyl compounds towards iodine monochloride: experimental and theoretical study. New Journal of Chemistry, 2001, 25, 509-517.	2.8	22

#	Article	IF	Citations
73	Theoretical Survey of the Potential Energy Surface of Ethylenediamine + Cu+Reactions. Journal of Physical Chemistry A, 2004, 108, 8367-8372.	2.5	22
74	Size dependence of ionization potentials and dissociation energies for neutral and singly-charged Cn fullerenes (n=40–70). Chemical Physics Letters, 2005, 416, 14-17.	2.6	22
75	Ionization and fragmentation of water clusters by fast highly charged ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 075101.	1.5	22
76	Fragmentation Dynamics of Doubly Charged Methionine in the Gas Phase. Journal of Physical Chemistry A, 2014, 118, 1374-1383.	2.5	22
77	Understanding the self-assembly of TCNQ on $Cu(111)$: a combined study based on scanning tunnelling microscopy experiments and density functional theory simulations. RSC Advances, 2016, 6, 15071-15079.	3.6	22
78	Polypeptide formation in clusters of \hat{l}^2 -alanine amino acids by single ion impact. Nature Communications, 2020, 11, 3818.	12.8	22
79	Fragmentation of small neutral carbon clusters. International Journal of Mass Spectrometry, 2006, 252, 126-132.	1.5	21
80	Understanding the Supramolecular Selfâ€Assembly of the Fullerene Derivative PCBM on Gold Surfaces. ChemPhysChem, 2008, 9, 1030-1035.	2.1	21
81	Ions colliding with clusters of fullerenes—Decay pathways and covalent bond formations. Journal of Chemical Physics, 2013, 139, 034309.	3.0	21
82	Quantum chemistry in environmental pesticide risk assessment. Pest Management Science, 2017, 73, 2199-2202.	3.4	21
83	Topology-Based Approach to Predict Relative Stabilities of Charged and Functionalized Fullerenes. Journal of Chemical Theory and Computation, 2018, 14, 1791-1810.	5.3	21
84	Modelling Intrinsic Basicities: The Use of the Electrostatic Potentials and the Atoms-in-Molecules Theory. Theoretical and Computational Chemistry, 1996, 3, 407-456.	0.4	20
85	Ionization potentials, dissociation energies and statistical fragmentation of neutral and positively charged small carbon clusters. Brazilian Journal of Physics, 2006, 36, 529-533.	1.4	20
86	Adsorption of Benzene on Cu(100) and on Cu(100) Covered with an Ultrathin NaCl Film: Molecule–Substrate Interaction and Decoupling. Journal of Physical Chemistry C, 2015, 119, 4062-4071.	3.1	20
87	Structure, Ionization, and Fragmentation of Neutral and Positively Charged Hydrogenated Carbon Clusters: C _{<i>n</i>} H _{<i>m</i>} ^{<i>q</i>+} (<i>n</i> >= 1–5, <i>m</i> =) Tj	ETQq11	0 .7 84314 rg
88	M ₃ C: A Computational Approach To Describe Statistical Fragmentation of Excited Molecules and Clusters. Journal of Chemical Theory and Computation, 2017, 13, 992-1009.	5.3	20
89	Ab Initio Molecular Orbital Study of XO2+ (X = F, Cl, Br, I) Systems. Journal of Physical Chemistry A, 1999, 103, 2793-2800.	2.5	19
90	The Final Steps of the Oppolzer Cyclization: Mechanism of the Insertion of Alkenes into Allylpalladium(II) Complexes. Chemistry - A European Journal, 2003, 9, 96-105.	3.3	19

#	Article	IF	Citations
91	Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001). Nanoscale, 2014, 6, 15271-15279.	5.6	19
92	Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations. Journal of Physical Chemistry A, 2018, 122, 4153-4166.	2.5	19
93	Gas-Phase Basicity of 2,7-Dimethyl-[1,2,4]-Triazepine Thio Derivatives. Journal of Physical Chemistry A, 2002, 106, 7383-7389.	2.5	18
94	Understanding Sulfone Behavior in Palladium-Catalyzed Domino Reactions with Aryl Iodides. Chemistry - A European Journal, 2006, 12, 4576-4583.	3.3	18
95	Bonding in exohedral metal–fullerene cationic complexes. RSC Advances, 2014, 4, 53010-53020.	3.6	18
96	Study of the interaction between short alkanethiols from ab initio calculations. Physical Chemistry Chemical Physics, 2010, 12, 7555.	2.8	17
97	AB initioMO study of the halogen cation basicities of some organic bases. Journal of Physical Organic Chemistry, 1991, 4, 177-191.	1.9	16
98	A theoretical study of the interaction between Ni+ and small oxygen- and nitrogen-containing bases. International Journal of Mass Spectrometry, 2002, 217, 119-129.	1.5	16
99	Theoretical study of the stability of multiply charged C70 fullerenes. Journal of Chemical Physics, 2007, 127, 104308.	3.0	16
100	Growth and Structure of Self-assembled Monolayers of a TTF Derivative on Au(111). Journal of Physical Chemistry C, 2010, 114, 6503-6510.	3.1	16
101	Ordered arrays of metal–organic magnets at surfaces. Journal of Physics Condensed Matter, 2013, 25, 484007.	1.8	16
102	Charge transfer-assisted self-limited decyanation reaction of TCNQ-type electron acceptors on Cu(100). Chemical Communications, 2014, 50, 833-835.	4.1	16
103	Stability of the glycine cation in the gas phase after interaction with multiply charged ions. European Physical Journal D, $2014,68,1$.	1.3	16
104	An AB initio molecular orbital study of the structure, energetics and bond activation of Al+complexes. Computational and Theoretical Chemistry, 1991, 234, 357-371.	1.5	14
105	Optimization of extended basis sets and assessment of different theoretical schemes for Pb containing compounds. Chemical Physics Letters, 2004, 383, 561-565.	2.6	14
106	Density functional theory study of multiply ionized weakly bound fullerene dimers. Journal of Chemical Physics, 2009, 130, 224302.	3.0	14
107	Prototropic tautomerism of 3,5-(oxo/thioxo) derivatives of 2,7-dimethyl-1,2,4-triazepinesElectronic supplementary information (ESI) available: the B3LYP/6-31G* optimized geometries of all the structures included in Fig. 1 and the corresponding TS. See http://www.rsc.org/suppdata/nj/b1/b109397e/. New lournal of Chemistry, 2002, 26, 711-719.	2.8	13
108	Why Does Pivalaldehyde (Trimethylacetaldehyde) Unexpectedly Seem More Basic Than 1-Adamantanecarbaldehyde in the Gas Phase? FT-ICR and High-Level Ab Initio Studies. Chemistry - A European Journal, 2005, 11, 1826-1832.	3.3	13

#	Article	IF	CITATIONS
109	Production of doubly-charged highly reactive species from the long-chain amino acid GABA initiated by Ar ⁹⁺ ionization. Physical Chemistry Chemical Physics, 2017, 19, 19609-19618.	2.8	13
110	Is C50 a superaromat? Evidence from electronic structure and ring current calculations. Physical Chemistry Chemical Physics, 2016, 18, 11653-11660.	2.8	12
111	Ab initio molecular orbital treatment of hydroxylamine-X+-water and hydroxylamine-X+-ammonia (X =) Tj ETQq1	l 0.784314 1.9	rgBT /Overl
112	Experimental and theoretical study of C2H4OAl+ complexes in the gas phase. The Journal of Physical Chemistry, 1992, 96, 8309-8317.	2.9	11
113	Stability of multiply charged fullerene anions and cations. Physical Review A, 2009, 80, .	2.5	11
114	Commensurate Solid–Solid Phase Transitions in Self-Assembled Monolayers of Alkylthiolates Lying on Metal Surfaces. Journal of the American Chemical Society, 2012, 134, 13224-13227.	13.7	11
115	Density functional theory study of the structure and vibrational modes of acrylonitrile adsorbed on Cu(100). Physical Chemistry Chemical Physics, 2013, 15, 1288-1295.	2.8	11
116	Tuning Intermolecular Charge Transfer in Donor–Acceptor Two-Dimensional Crystals on Metal Surfaces. Journal of Physical Chemistry C, 2017, 121, 23505-23510.	3.1	11
117	Study of polarization effects in three-membered-ring heterocycles. Computational and Theoretical Chemistry, 1988, 165, 99-114.	1.5	10
118	Gas-Phase Chemistry of Ethyl and Vinyl Amines, Phosphines, and Arsines:  A DFT Study of the Structure and Stability of Their Cu+ Complexes. Journal of Physical Chemistry A, 2002, 106, 9306-9312.	2.5	10
119	Triaziridine and tetrazetidine vs. cyclic water trimer and tetramer: A computational approach to the relationship between molecular and supramolecular conformational analysis. Physical Chemistry Chemical Physics, 2002, 4, 2123-2129.	2.8	10
120	Simple bond patterns predict the stability of Diels–Alder adducts of empty fullerenes. Chemical Communications, 2018, 54, 4156-4159.	4.1	10
121	Synthesis, X-ray Structure, and Properties of 2-(1†-Pyridin-2†-one)Benzimidazole. Journal of Physical Chemistry B, 2001, 105, 12759-12770.	2.6	9
122	Generalized structural motif model for studying the thermodynamic stability of fullerenes: from C ₆₀ to graphene passing through giant fullerenes. Physical Chemistry Chemical Physics, 2017, 19, 19646-19655.	2.8	9
123	A general approach to study molecular fragmentation and energy redistribution after an ionizing event. Physical Chemistry Chemical Physics, 2021, 23, 1859-1867.	2.8	9
124	Fragmentation of neutral Cn clusters (n ? 9): experimental and theoretical investigations. European Physical Journal D, 2003, 24, 149-152.	1.3	8
125	Surface assembly of porphyrin nanorods with one-dimensional zinc–oxygen spinal cords. CrystEngComm, 2011, 13, 5591. Multiple electron capture, excitation, and fragmentation in <mml:math< td=""><td>2.6</td><td>8</td></mml:math<>	2.6	8
126	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">C<mml:mrow><mml:msup><mml:mrow /><mml:mrow></mml:mrow></mml:mrow </mml:msup><mml:mo>a^'mathvariant="normal">C<mml:mn>60</mml:mn>collisions. Physical Review A, 2014, 90, .</mml:mo></mml:mrow></mml:mi 	o> <td>ırow><mml:< td=""></mml:<></td>	ırow> <mml:< td=""></mml:<>

8

#	Article	IF	CITATIONS
127	Pesticide byproducts formation: Theoretical study of the protonation of alloxydim degradation products. Computational and Theoretical Chemistry, 2018, 1143, 9-19.	2.5	8
128	Potential energy surfaces of C2v and D3h ozone complexes with Li+. Journal of Chemical Physics, 1995, 103, 253-265.	3.0	7
129	Exohedral interaction in cationic lithium metallofullerenes. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	7
130	Ultrafast nonadiabatic fragmentation dynamics of biomolecules. Journal of Physics: Conference Series, 2014, 488, 012037.	0.4	7
131	Theoretical study of the interaction between molecular hydrogen and [MC ₆₀] ⁺ complexes. RSC Advances, 2016, 6, 27447-27451.	3.6	7
132	Computational Study of the Structure and Degradation Products of Alloxydim Herbicide. Journal of Physical Chemistry A, 2018, 122, 3909-3918.	2.5	7
133	Aromaticity, Coulomb repulsion, π delocalization or strain: who is who in endohedral metallofullerene stability?. Physical Chemistry Chemical Physics, 2019, 21, 124-131.	2.8	7
134	Hydrogenated polycyclic aromatic hydrocarbons: isomerism and aromaticity. Physical Chemistry Chemical Physics, 2020, 22, 21968-21976.	2.8	7
135	xmlns:xocs= http://www.elsevier.com/xml/xocs/dtd xmlns:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/M	3.0	6
136	Formation of Self-Assembled Chains of Tetrathiafulvalene on a Cu(100) Surface. Journal of Physical Chemistry A, 2011, 115, 13080-13087.	2.5	6
137	The role of spin-forbidden processes in N+(3P) + NH3 reactions in the gas phase. Physical Chemistry Chemical Physics, 2001, 3, 179-183.	2.8	5
138	Gas-Phase Chemistry of Ethynylamine, -Phosphine and -Arsine. Structure and Stability of their Cu+ and Ni+ Complexes. ChemPhysChem, 2003, 4, 72-78.	2.1	5
139	Unraveling the Factors That Control Soft Landing of Small Silyl Ions on Fluorinated Self-Assembled Monolayers. Journal of Physical Chemistry C, 2014, 118, 10159-10169.	3.1	5
140	$\langle i \rangle N \langle i \rangle$ -Acetylglycine Cation Tautomerization Enabled by the Peptide Bond. Journal of Physical Chemistry A, 2015, 119, 9581-9589.	2.5	5
141	When is the Bell–Evans–Polanyi principle fulfilled in Diels–Alder reactions of fullerenes?. Physical Chemistry Chemical Physics, 2020, 22, 8846-8852.	2.8	5
142	Hydrogenation of C ₂₄ Carbon Clusters: Structural Diversity and Energetic Properties. Journal of Physical Chemistry A, 2021, 125, 5273-5288.	2.5	5
143	Isomers of Hydrogenated Polycyclic Aromatic Hydrocarbons Explain the Presence of Infrared Bands in the 3 î¼m Region. Astrophysical Journal, 2020, 899, 18.	4.5	5
144	Thermochemistry of the reactions between CN+ and H2O in the gas phase. Molecular Physics, 2001, 99, 1129-1137.	1.7	4

#	Article	IF	CITATIONS
145	Perturbation of the intramolecular hydrogen bonds of glucose by Cu+association. International Journal of Quantum Chemistry, 2002, 86, 138-144.	2.0	4
146	Structure and reactivity of C54q+(q= 0, 1, 2 and 4) fullerenes. Physical Chemistry Chemical Physics, 2005, 7, 3756.	2.8	4
147	Time-dependent density functional theory molecular dynamics simulation of doubly charged uracil in gas phase. Open Physics, $2014, 12, .$	1.7	4
148	Thermal Transition from a Disordered, 2D Network to a Regular, 1D, Fe(II)–DCNQI Coordination Network. Journal of Physical Chemistry C, 2016, 120, 16712-16721.	3.1	4
149	Fully versus constrained statistical fragmentation of carbon clusters and their heteronuclear derivatives. Journal of Chemical Physics, 2019, 150, 144301.	3.0	4
150	Thermochemistry of the Reactions $F+(3P,1D)+PH3$ in the Gas Phase. Journal of Physical Chemistry A, 2000, 104, 8075-8080.	2.5	3
151	Computational Studies on the Cyclization of Polycyclic Aromatic Hydrocarbons in the Synthesis of Curved Aromatic Derivatives. ChemPhysChem, 2006, 7, 475-481.	2.1	3
152	Charge-Transfer-Induced Isomerization of DCNQI on Cu(100). Journal of Physical Chemistry C, 2014, 118, 27388-27392.	3.1	3
153	Fragmentation network of doubly charged methionine: Interpretation using graph theory. Journal of Chemical Physics, 2016, 145, 094302.	3.0	3
154	Controlling the diversity of ion-induced fragmentation pathways by <i>N</i> -methylation of amino acids. Physical Chemistry Chemical Physics, 2022, 24, 941-954.	2.8	3
155	A Theoretical Study of the Reaction between N+(3P) and Formaldehyde and Related Processes in the Gas Phase. Journal of Physical Chemistry A, 2000, 104, 11132-11139.	2.5	2
156	Charge Transfer and Evaporation in Low Energy Collisions of Metal Clusters and Fullerenes with Atomic Targets. Physica Scripta, 2004, 110, 308.	2.5	2
157	Absolute charge transfer and fragmentation cross sections in He2++C60collisions. Journal of Physics: Conference Series, 2009, 194, 012047.	0.4	2
158	Theoretical study of the stability of small triply charged carbon clusters Cn3+ (n=3–12). International Journal of Mass Spectrometry, 2011, 299, 20-26.	1.5	2
159	Onset of Chiral Adenine Surface Growth. ChemPhysChem, 2013, 14, 3294-3302.	2.1	2
160	Timing of charge migration in betaine by impact of fast atomic ions. Science Advances, 2021, 7, eabg9080.	10.3	2
161	High-level ab initio study of the N+(3P)+SH2reactions in the gas phase: Role of spin-forbidden pathways. International Journal of Quantum Chemistry, 2002, 86, 130-137.	2.0	1
162	Ultrafast non-adiabatic fragmentation dynamics of doubly charged uracil in gas and liquid phase. Journal of Physics: Conference Series, 2012, 388, 102055.	0.4	1

#	Article	lF	Citations
163	Molecular dynamics of photodissociation: towards more complex systems. Journal of Physics: Conference Series, 2015, 635, 112105.	0.4	1
164	X-ray induced fragmentation dynamics of doubly charged L-alanine in gas phase. Journal of Physics: Conference Series, 2015, 635, 112094.	0.4	1
165	Molecular dynamics studies of impulse driven reactions in molecules and molecular clusters. Journal of Physics: Conference Series, 2015, 635, 032043.	0.4	1
166	Charge dependence of fragmentation process induced by ion collisions with furan molecule. Journal of Physics: Conference Series, 2017, 875, 102021.	0.4	1
167	Excitation and fragmentation in high velocity C _n N ⁺ - He collisions. Journal of Physics: Conference Series, 2017, 875, 102022.	0.4	1
168	Charge and energy sharing in the fragmentation of astrophysically relevant carbon clusters. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	1
169	Charge transfer and fragmentation in C60+ C6+collisions. Journal of Physics: Conference Series, 2012, 388, 102012.	0.4	0
170	Fragmentation of amino acids induced by collisions with low-energy highly charged ions. Journal of Physics: Conference Series, 2014, 488, 102019.	0.4	0
171	Bond formation in C+59 – C60 collisions. Journal of Physics: Conference Series, 2014, 488, 012028.	0.4	0
172	Fragmentation dynamics of excited ionized polycyclic aromatic hydrocarbons. Journal of Physics: Conference Series, 2014, 488, 102027.	0.4	0
173	Structure, Ionization and Fragmentation of Neutral and Positively Charged Hydrogenated Carbon Clusters: $C < sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > cl sub > ci > n < li > n < li > ci > n$	ETiQq11	0.78 4314 rg
174	Breakdown curves of carbon-based molecules for astrochemistry. Journal of Physics: Conference Series, 2015, 635, 032107.	0.4	0
175	Theoretical Modeling of Mass Spectrometry. Journal of Physics: Conference Series, 2015, 635, 072060.	0.4	0
176	Slow ion interaction with N-methylglycine and N-acetylglycine. Journal of Physics: Conference Series, 2015, 635, 032054.	0.4	0
177	Unusual hydrogen and hydroxyl migration in the fragmentation of excited doubly-positively-charged amino acids in the gas phase. Journal of Physics: Conference Series, 2015, 635, 032037.	0.4	0
178	Fusion reaction dynamics of fullerene molecules. Journal of Physics: Conference Series, 2015, 635, 032093.	0.4	0
179	XUV/X-ray light and fast ions for ultrafast chemistry. Physical Chemistry Chemical Physics, 2017, 19, 19533-19535.	2.8	0
180	Tribute to Manuel Yáñez and Otilia Mó. Journal of Physical Chemistry A, 2018, 122, 5671-5672.	2.5	0

#	Article	IF	CITATIONS
181	Decay pathways for protonated and deprotonated adenine molecules. Journal of Chemical Physics, 2019, 151, 044306.	3.0	0
182	Theoretical Study of NO Dissociation on an Open Flat Ru(101i1) Surface. Journal of Physical Chemistry C, 2019, 123, 5488-5494.	3.1	0
183	Understanding the formation of metastable furan dication in collisions with ions. Journal of Physics: Conference Series, 2020, 1412, 132002.	0.4	O
184	Foreword to the special issue on the "Electronic structure: principles and applications (ESPA 2018)― conference. Theoretical Chemistry Accounts, 2020, 139, 86.	1.4	0
185	FRAGMENTATION OF COLLISIONALLY EXCITED FULLERENES. , 2006, , .		0
186	Exohedral interaction in cationic lithium metallofullerenes. Highlights in Theoretical Chemistry, 2014, , 89-96.	0.0	0
187	Determination of energy-transfer distributions in ionizing ion-molecule collisions. Journal of Physics: Conference Series, 2020, 1412, 152085.	0.4	0