Julie E Simpson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192976/publications.pdf

Version: 2024-02-01

117453 98622 4,729 72 34 67 h-index citations g-index papers 72 72 72 6721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biological and methodological complexities of betaâ€amyloid peptide: Implications for Alzheimer's disease research. Journal of Neurochemistry, 2022, 160, 434-453.	2.1	12
2	RNA-Seq Profiling of Neutrophil-Derived Microvesicles in Alzheimer's Disease Patients Identifies a miRNA Signature That May Impact Blood–Brain Barrier Integrity. International Journal of Molecular Sciences, 2022, 23, 5913.	1.8	7
3	Review: Microglia in motor neuron disease. Neuropathology and Applied Neurobiology, 2021, 47, 179-197.	1.8	20
4	Heterogeneity of cellular inflammatory responses in ageing white matter and relationship to Alzheimer's and small vessel disease pathologies. Brain Pathology, 2021, 31, e12928.	2.1	10
5	Persistent DNA damage alters the neuronal transcriptome suggesting cell cycle dysregulation and altered mitochondrial function. European Journal of Neuroscience, 2021, 54, 6987-7005.	1.2	7
6	Type 2 diabetes mellitus-associated transcriptome alterations in cortical neurones and associated neurovascular unit cells in the ageing brain. Acta Neuropathologica Communications, 2021, 9, 5.	2.4	17
7	Expression of p16 and p21 in the frontal association cortex of <scp>ALS</scp> / <scp>MND</scp> brains suggests neuronal cell cycle dysregulation and astrocyte senescence in early stages of the disease. Neuropathology and Applied Neurobiology, 2020, 46, 171-185.	1.8	42
8	Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort. Journal of Neuropathology and Experimental Neurology, 2020, 79, 950-958.	0.9	7
9	Demonstrating a reduced capacity for removal of fluid from cerebral white matter and hypoxia in areas of white matter hyperintensity associated with age and dementia. Acta Neuropathologica Communications, 2020, 8, 131.	2.4	16
10	Transcriptomic Analysis of Age-Associated Periventricular Lesions Reveals Dysregulation of the Immune Response. International Journal of Molecular Sciences, 2020, 21, 7924.	1.8	7
11	Transcriptomic Analysis of Human Astrocytes In Vitro Reveals Hypoxia-Induced Mitochondrial Dysfunction, Modulation of Metabolism, and Dysregulation of the Immune Response. International Journal of Molecular Sciences, 2020, 21, 8028.	1.8	16
12	Histological characterization of interneurons in Alzheimer's disease reveals a loss of somatostatin interneurons in the temporal cortex. Neuropathology, 2020, 40, 336-346.	0.7	19
13	Acute effects of systemic inflammation upon the neuro-glial-vascular unit and cerebrovascular function. Brain, Behavior, & Immunity - Health, 2020, 5, 100074.	1.3	11
14	The Pattern of AQP4 Expression in the Ageing Human Brain and in Cerebral Amyloid Angiopathy. International Journal of Molecular Sciences, 2020, 21, 1225.	1.8	20
15	NDRG2 Expression Correlates with Neurofibrillary Tangles and Microglial Pathology in the Ageing Brain. International Journal of Molecular Sciences, 2020, 21, 340.	1.8	4
16	Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier. International Journal of Molecular Sciences, 2019, 20, 3097.	1.8	18
17	Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. International Journal of Molecular Sciences, 2019, 20, 5227.	1.8	36
18	lba-1-/CD68+ microglia are a prominent feature of age-associated deep subcortical white matter lesions. PLoS ONE, 2019, 14, e0210888.	1.1	61

#	Article	IF	Citations
19	Histological data of axons, astrocytes, and myelin in deep subcortical white matter populations. Data in Brief, 2019, 23, 103762.	0.5	1
20	Quantitative histomorphometry of capillary microstructure in deep white matter. NeuroImage: Clinical, 2019, 23, 101839.	1.4	8
21	The Time Course of Recognition Memory Impairment and Glial Pathology in the hAPP-J20 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 609-624.	1.2	23
22	TIGAR inclusion pathology is specific for Lewy body diseases. Brain Research, 2019, 1706, 218-223.	1.1	7
23	Immuno-Laser-Capture Microdissection for the Isolation of Enriched Glial Populations from Frozen Post-Mortem Human Brain. Methods in Molecular Biology, 2018, 1723, 273-284.	0.4	7
24	Ageâ€associated changes in the bloodâ€brain barrier: comparative studies in human and mouse. Neuropathology and Applied Neurobiology, 2018, 44, 328-340.	1.8	84
25	P4â€059: NEUTROPHILâ€DERIVED MICROVESICLEâ€INDUCED BLOOD BRAIN BARRIER DYSFUNCTION: A POTENTI MECHANISM LINKING SYSTEMIC INFLAMMATION AND DEMENTIA. Alzheimer's and Dementia, 2018, 14, P1455.	IAL 0.4	0
26	S5â€01â€01: AGEING AND NEUROIMMUNOLOGY: WHITE MATTER PATHOLOGY. Alzheimer's and Dementia, 2018 14, P1624.	0.4	0
27	Local volume fraction distributions of axons, astrocytes, and myelin in deep subcortical white matter. Neurolmage, 2018, 179, 275-287.	2.1	17
28	Loss of IGF1R in Human Astrocytes Alters Complex I Activity and Support for Neurons. Neuroscience, 2018, 390, 46-59.	1.1	23
29	Proteomic and cellular localisation studies suggest nonâ€tight junction cytoplasmic and nuclear roles for occludin in astrocytes. European Journal of Neuroscience, 2018, 47, 1444-1456.	1.2	14
30	Metallothioneinâ€l/II expression associates with the astrocyte DNA damage response and not Alzheimerâ€type pathology in the aging brain. Glia, 2018, 66, 2316-2323.	2.5	27
31	Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiology of Disease, 2017, 102, 11-20.	2.1	14
32	Review: Neuropathology and behavioural features of transgenic murine models of Alzheimer's disease. Neuropathology and Applied Neurobiology, 2017, 43, 553-570.	1.8	46
33	Review: Astrocytes in Alzheimer's disease and other ageâ€associated dementias: a supporting player with a central role. Neuropathology and Applied Neurobiology, 2017, 43, 281-298.	1.8	166
34	Gene expression profiling of the astrocyte transcriptome in multiple sclerosis normal appearing white matter reveals a neuroprotective role. Journal of Neuroimmunology, 2016, 299, 139-146.	1.1	44
35	Neuronal <scp>DNA</scp> damage responseâ€associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of <scp>A</scp> zheimerâ€type pathology. Neuropathology and Applied Neurobiology, 2016, 42, 167-179.	1.8	28
36	Expression microdissection isolation of enriched cell populations from archival brain tissue. Journal of Neuroscience Methods, 2016, 268, 125-130.	1.3	1

#	Article	IF	Citations
37	Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain. Brain Pathology, 2015, 25, 565-574.	2.1	57
38	A Reduced Astrocyte Response to \hat{l}^2 -Amyloid Plaques in the Ageing Brain Associates with Cognitive Impairment. PLoS ONE, 2015, 10, e0118463.	1.1	45
39	The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain. Neuroscience Letters, 2015, 609, 11-17.	1.0	58
40	Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Molecular Brain, 2015, 8, 51.	1.3	68
41	Brain Endothelial miR-146a Negatively Modulates T-Cell Adhesion through Repressing Multiple Targets to Inhibit NF-ÎB Activation. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 412-423.	2.4	76
42	Ageâ€Associated White Matter Lesions: The <scp>MRC C</scp> ognitive <scp>F</scp> unction and <scp>A</scp> geing <scp>S</scp> tudy. Brain Pathology, 2015, 25, 35-43.	2.1	72
43	A neuronal <scp>DNA</scp> damage response is detected at the earliest stages of <scp>A</scp> lzheimer's neuropathology and correlates with cognitive impairment in the <scp>M</scp> edical <scp>R</scp> esearch <scp>C</scp> ouncil's <scp>C</scp> ognitive <scp>F</scp> unction and <scp>A</scp> geing <scp>S</scp> tudy ageing brain cohort. Neuropathology	1.8	40
44	Alphaâ€synuclein mRNA expression in oligodendrocytes in MSA. Glia, 2014, 62, 964-970.	2.5	149
45	<scp>DNA</scp> damage response and senescence in endothelial cells of human cerebral cortex and relation to <scp>A</scp> zheimer's neuropathology progression: a populationâ€based study in the <scp>M</scp> edical <scp>R</scp> esearch <scp>C</scp> ouncil <scp>C</scp> ognitive <scp>F</scp> unction and <scp>A</scp> geing <scp>S</scp> tudy (<scp>MRC</scp> â€ <scp>CFAS</scp>)	1.8	30
46	MicroRNAâ€155 negatively affects blood–brain barrier function during neuroinflammation. FASEB Journal, 2014, 28, 2551-2565.	0.2	220
47	Brain haemosiderin in older people: pathological evidence for an ischaemic origin of magnetic resonance imaging (<scp>MRI</scp>) microbleeds. Neuropathology and Applied Neurobiology, 2014, 40, 258-269.	1.8	66
48	Calcium dysregulation in relation to <scp>A</scp> lzheimerâ€type pathology in the ageing brain. Neuropathology and Applied Neurobiology, 2013, 39, 788-799.	1.8	42
49	Mesial Temporal Astrocyte Tau Pathology in the MRC-CFAS Ageing Brain Cohort. Dementia and Geriatric Cognitive Disorders, 2012, 34, 15-24.	0.7	41
50	The epidemiological neuropathology of dementia and the implications for drug development. Neurodegenerative Disease Management, 2012, 2, 471-482.	1.2	7
51	Isolation of enriched glial populations from post-mortem human CNS material by immuno-laser capture microdissection. Journal of Neuroscience Methods, 2012, 208, 108-113.	1.3	29
52	Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: A study in the MRC-CFAS population neuropathology cohort. Neuroscience Letters, 2011, 505, 25-30.	1.0	90
53	Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype. Neurobiology of Aging, 2011, 32, 1795-1807.	1.5	166
54	Epidemiological Neuropathology: The MRC Cognitive Function and Aging Study Experience. Journal of Alzheimer's Disease, 2011, 25, 359-372.	1.2	106

#	Article	IF	Citations
55	Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions. NeuroMolecular Medicine, 2011, 13, 289-299.	1.8	18
56	Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathology and Applied Neurobiology, 2010, 36, 25-40.	1.8	93
57	Alterations of the blood–brain barrier in cerebral white matter lesions in the ageing brain. Neuroscience Letters, 2010, 486, 246-251.	1.0	68
58	Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 2010, 31, 578-590.	1.5	312
59	Microarray RNA Expression Analysis of Cerebral White Matter Lesions Reveals Changes in Multiple Functional Pathways. Stroke, 2009, 40, 369-375.	1.0	80
60	Population Variation in Glial Fibrillary Acidic Protein Levels in Brain Ageing: Relationship to Alzheimer-Type Pathology and Dementia. Dementia and Geriatric Cognitive Disorders, 2009, 27, 465-473.	0.7	50
61	White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathology and Applied Neurobiology, 2007, 33, 410-419.	1.8	176
62	Microglial activation in white matter lesions and nonlesional white matter of ageing brains. Neuropathology and Applied Neurobiology, 2007, 33, 670-683.	1.8	114
63	White Matter Lesions in an Unselected Cohort of the Elderly. Stroke, 2006, 37, 1391-1398.	1.0	495
64	The humoral response in the pathogenesis of gluten ataxia. Neurology, 2002, 58, 1221-1226.	1.5	213
65	Extracellular Nucleotides Differentially Regulate Interleukin- $1\hat{l}^2$ Signaling in Primary Human Astrocytes: Implications for Inflammatory Gene Expression. Journal of Neuroscience, 2001, 21, 4134-4142.	1.7	89
66	Inflammation in the central nervous system in multiple sclerosis: The role of chemokines and their receptors. Inflammopharmacology, 2001, 9, 23-33.	1.9	1
67	Expression of the \hat{l}^2 -chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. Journal of Neuroimmunology, 2000, 108, 192-200.	1.1	203
68	Expression of the interferon- $\hat{1}^3$ -inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathology and Applied Neurobiology, 2000, 26, 133-142.	1.8	195
69	The Role of Chemokines in the Pathogenesis of Multiple Sclerosis. Advances in Experimental Medicine and Biology, 1999, 468, 135-150.	0.8	13
70	Expression of monocyte chemoattractant protein-1 and other \hat{l}^2 -chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. Journal of Neuroimmunology, 1998, 84, 238-249.	1.1	400
71	Transcriptomic Profiling Reveals Discrete Poststroke Dementia Neuronal and Gliovascular Signatures. Translational Stroke Research, 0, , .	2.3	1
72	Differential perivascular microglial activation in the deep white matter in vascular dementia developed postâ€stroke. Brain Pathology, 0, , .	2.1	6