
Isabel Odriozola-Serrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chemistry, 2009, 112, 258-266.	4.2	177
2	Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chemistry, 2007, 105, 1151-1158.	4.2	167
3	Influence of alginate-based edible coating as carrier of antibrowning agents onÂbioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT - Food Science and Technology, 2013, 50, 240-246.	2.5	166
4	Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chemistry, 2009, 115, 1312-1319.	4.2	154
5	Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. European Food Research and Technology, 2008, 228, 239-248.	1.6	152
6	Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 2008, 9, 272-279.	2.7	130
7	Browning Evaluation of Ready-to-Eat Apples as Affected by Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 2001, 49, 3685-3690.	2.4	117
8	Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut â€~Kent' mango (Mangifera indica L.). Postharvest Biology and Technology, 2009, 51, 384-390.	2.9	109
9	Effect of minimal processing on bioactive compounds and color attributes of fresh-cut tomatoes. LWT - Food Science and Technology, 2008, 41, 217-226.	2.5	100
10	Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends in Food Science and Technology, 2013, 29, 98-107.	7.8	97
11	Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT - Food Science and Technology, 2009, 42, 93-100.	2.5	90
12	Metabolomics for assessing safety and quality of plant-derived food. Food Research International, 2013, 54, 1172-1183.	2.9	86
13	Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chemistry, 2013, 136, 199-205.	4.2	81
14	Influence of Storage Temperature on the Kinetics of the Changes in Anthocyanins, Vitamin C, and Antioxidant Capacity in Freshâ€Cut Strawberries Stored under Highâ€Oxygen Atmospheres. Journal of Food Science, 2009, 74, C184-91.	1.5	76
15	Effects of Pulsed Electric Fields on the Bioactive Compound Content and Antioxidant Capacity of Tomato Fruit. Journal of Agricultural and Food Chemistry, 2012, 60, 3126-3134.	2.4	74
16	Bio-preservation of fresh-cut tomatoes using natural antimicrobials. European Food Research and Technology, 2008, 226, 1047-1055.	1.6	73
17	Changes in the Polyphenol Profile of Tomato Juices Processed by Pulsed Electric Fields. Journal of Agricultural and Food Chemistry, 2012, 60, 9667-9672.	2.4	73
18	Lycopene, Vitamin C, and Antioxidant Capacity of Tomato Juice as Affected by High-Intensity Pulsed Electric Fields Critical Parameters. Journal of Agricultural and Food Chemistry, 2007, 55, 9036-9042.	2.4	68

#	Article	IF	CITATIONS
19	Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chemistry, 2013, 141, 3131-3138.	4.2	68
20	Comparative Study on Shelf Life of Whole Milk Processed by High-Intensity Pulsed Electric Field or Heat Treatment. Journal of Dairy Science, 2006, 89, 905-911.	1.4	61
21	The role of peroxidase on the antioxidant potential of fresh-cut â€ ⁻ Piel de Sapo' melon packaged under different modified atmospheres. Food Chemistry, 2008, 106, 1085-1092.	4.2	60
22	Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chemistry, 2008, 107, 949-955.	4.2	59
23	Nanoemulsion-Based Delivery Systems to Improve Functionality of Lipophilic Components. Frontiers in Nutrition, 2014, 1, 24.	1.6	57
24	Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. Journal of Food Engineering, 2008, 89, 210-216.	2.7	55
25	Changes in bioactive composition of fresh-cut strawberries stored under superatmospheric oxygen, low-oxygen or passive atmospheres. Journal of Food Composition and Analysis, 2010, 23, 37-43.	1.9	54
26	Comparative study on antioxidant properties of carrot juice stabilised by highâ€intensity pulsed electric fields or heat treatments. Journal of the Science of Food and Agriculture, 2009, 89, 2636-2642.	1.7	51
27	Fast simultaneous determination of free and conjugated isoflavones in soy milk by UHPLC–UV. Food Chemistry, 2012, 135, 2832-2838.	4.2	50
28	Use of Weibull distribution for describing kinetics of antioxidant potential changes in fresh-cut watermelon. Journal of Food Engineering, 2009, 95, 99-105.	2.7	49
29	Stability of health-related compounds in plant foods through the application of non thermal processes. Trends in Food Science and Technology, 2012, 23, 111-123.	7.8	49
30	Impact of emulsifier nature and concentration on the stability of β-carotene enriched nanoemulsions during <i>in vitro</i> digestion. Food and Function, 2019, 10, 713-722.	2.1	41
31	Kinetic Study of Anthocyanins, Vitamin C, and Antioxidant Capacity in Strawberry Juices Treated by High-Intensity Pulsed Electric Fields. Journal of Agricultural and Food Chemistry, 2008, 56, 8387-8393.	2.4	40
32	Antioxidant Content of Fresh-Cut Pears Stored in High-O2Active Packages Compared with Conventional Low-O2Active and Passive Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 2008, 56, 932-940.	2.4	40
33	Antioxidant properties and shelfâ€life extension of freshâ€cut tomatoes stored at different temperatures. Journal of the Science of Food and Agriculture, 2008, 88, 2606-2614.	1.7	31
34	The Effect of Sodium Carboxymethylcellulose on the Stability and Bioaccessibility of Anthocyanin Water-in-Oil-in-Water Emulsions. Food and Bioprocess Technology, 2018, 11, 2229-2241.	2.6	29
35	Influence of mandarin fiber addition on physico-chemical properties of nanoemulsions containing β-carotene under simulated gastrointestinal digestion conditions. LWT - Food Science and Technology, 2017, 84, 331-337.	2.5	25
36	Effects of Pulsed Electric Fields Processing Strategies on Health-Related Compounds of Plant-Based Foods. Food Engineering Reviews, 2017, 9, 213-225.	3.1	25

#	Article	IF	CITATIONS
37	Nanostructured Lipid-Based Delivery Systems as a Strategy to Increase Functionality of Bioactive Compounds. Foods, 2020, 9, 325.	1.9	24
38	Development, physical stability and bioaccessibility of β-carotene-enriched tertiary emulsions. Journal of Functional Foods, 2020, 64, 103615.	1.6	23
39	Effect of High-Oxygen Atmospheres on the Antioxidant Potential of Fresh-Cut Tomatoes. Journal of Agricultural and Food Chemistry, 2009, 57, 6603-6610.	2.4	21
40	Differences in free amino acid profile of non-thermally treated tomato and strawberry juices. Journal of Food Composition and Analysis, 2013, 32, 51-58.	1.9	21
41	Improving the In Vitro Bioaccessibility of β-Carotene Using Pectin Added Nanoemulsions. Foods, 2020, 9, 447.	1.9	21
42	Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers. LWT - Food Science and Technology, 2021, 135, 110059.	2.5	20
43	Encapsulation and controlled release of phycocyanin during the in vitro digestion using polysaccharide-added double emulsions (W1/O/W2). Food Structure, 2022, 31, 100249.	2.3	12
44	Antioxidant activity of thermal or non-thermally treated strawberry and mango juices by Saccharomyces cerevisiae growth based assays. LWT - Food Science and Technology, 2016, 74, 55-61.	2.5	8
45	The Effects of Non-Thermal Technologies on Phytochemicals. , 0, , .		4
46	Nanostructured Systems to Increase Bioavailability of Food Ingredients. , 2019, , 13-33.		3
47	Screening the Antioxidant Activity of Thermal or Non-Thermally Treated Fruit Juices by In Vitro and In Vivo Assays. Beverages, 2022, 8, 36.	1.3	2
48	Pulsed Electric Fields Effects on Health-Related Compounds and Antioxidant Capacity of Tomato Juice. , 2017, , 2225-2238.		0