
Susana Frases

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Harris'Âhawk (Parabuteo unicinctus) as a source of pathogenic human yeasts: a potential risk to human health. Future Microbiology, 2022, 17, 169-175.	1.0	1
2	Extracellular Vesicles Regulate Biofilm Formation and Yeast-to-Hypha Differentiation in Candida albicans. MBio, 2022, 13, e0030122.	1.8	24
3	Comparative Biophysical and Ultrastructural Analysis of Melanins Produced by Clinical Strains of Different Species From the Trichosporonaceae Family. Frontiers in Microbiology, 2022, 13, 876611.	1.5	1
4	Does DHN-Melanin Always Protect Fungi against Antifungal Drugs? The Fonsecaea/Micafungin Paradigm. Microbiology Research, 2022, 13, 201-209.	0.8	3
5	Trichosporon asahii as Cause of Nosocomial Pneumonia in Patient With COVID-19: A Triple Co-infection. Archivos De Bronconeumologia, 2021, 57, 46-48.	0.4	17
6	Prevalence of opportunistic invasive aspergillosis in COVIDâ€19 patients with severe pneumonia. Mycoses, 2021, 64, 144-151.	1.8	61
7	Dexamethasone and Methylprednisolone Promote Cell Proliferation, Capsule Enlargement, and in vivo Dissemination of C. neoformans. Frontiers in Fungal Biology, 2021, 2, .	0.9	2
8	Ultrastructural Study of Cryptococcus neoformans Surface During Budding Events. Frontiers in Microbiology, 2021, 12, 609244.	1.5	2
9	Production of Secreted Carbohydrates that Present Immunologic Similarities with the Cryptococcus Glucuronoxylomannan by Members of the Trichosporonaceae Family: A Comparative Study Among Species of Clinical Interest. Mycopathologia, 2021, 186, 377-385.	1.3	3
10	<i>Candida glabrata</i> produces a melanin-like pigment that protects against stress conditions encountered during parasitism. Future Microbiology, 2021, 16, 509-520.	1.0	8
11	Probing the screening of the Casimir interaction with optical tweezers. Physical Review Research, 2021, 3, .	1.3	9
12	Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors. Respiratory Medicine, 2021, 188, 106619.	1.3	41
13	Medicines for Malaria Venture COVID Box: a source for repurposing drugs with antifungal activity against human pathogenic fungi. Memorias Do Instituto Oswaldo Cruz, 2021, 116, e210207.	0.8	9
14	Systemic mycoses: a potential alert for complications in COVID-19 patients. Future Microbiology, 2020, 15, 1405-1413.	1.0	38
15	Membrane Elastic Properties during Neural Precursor Cell Differentiation. Cells, 2020, 9, 1323.	1.8	8
16	Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties. Physical Review E, 2020, 101, 062403.	0.8	5
17	Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. Science of the Total Environment, 2020, 740, 140135.	3.9	14
18	Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Frontiers in Cellular and Infection Microbiology, 2020, 10, 39.	1.8	6

Susana Frases

#	Article	IF	CITATIONS
19	Surface, adhesiveness and virulence aspects of Candida haemulonii species complex. Medical Mycology, 2020, 58, 973-986.	0.3	10
20	Histoplasma capsulatum Glycans From Distinct Genotypes Share Structural and Serological Similarities to Cryptococcus neoformans Glucuronoxylomannan. Frontiers in Cellular and Infection Microbiology, 2020, 10, 565571.	1.8	4
21	The mechanical properties of microbial surfaces and biofilms. Cell Surface, 2019, 5, 100028.	1.5	29
22	Interaction with Pantoea agglomerans Modulates Growth and Melanization of Sporothrix brasiliensis and Sporothrix schenckii. Mycopathologia, 2019, 184, 367-381.	1.3	5
23	<i>Cryptococcus neoformans</i> Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model. MBio, 2019, 10, .	1.8	63
24	Rheological properties of cryptococcal polysaccharide change with fiber size, antibody binding and temperature. Future Microbiology, 2019, 14, 867-884.	1.0	14
25	A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure. MSphere, 2018, 3, .	1.3	15
26	Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling, 2018, 34, 800-814.	0.8	27
27	Genotypic and Phenotypic Diversity of Cryptococcus gattii VGII Clinical Isolates and Its Impact on Virulence. Frontiers in Microbiology, 2018, 9, 132.	1.5	19
28	Trypanosoma cruzi epimastigotes store cholesteryl esters in lipid droplets after cholesterol endocytosis. Molecular and Biochemical Parasitology, 2018, 224, 6-16.	0.5	23
29	Lack of chitin synthase genes impacts capsular architecture and cellular physiology in Cryptococcus neoformans. Cell Surface, 2018, 2, 14-23.	1.5	15
30	Biochemical Characterization of Streptomyces sp. 11.2 Secretome Reveals the Presence of Multienzymatic Complexes Containing Cellulases and Accessory Enzymes. Bioenergy Research, 2017, 10, 1-12.	2.2	12
31	Phosphorus-rich structures and capsular architecture in <i>Cryptococcus neoformans</i> . Future Microbiology, 2017, 12, 227-238.	1.0	14
32	Atorvastatin as a promising anticryptococcal agent. International Journal of Antimicrobial Agents, 2017, 49, 695-702.	1.1	35
33	The environmental yeast Cryptococcus liquefaciens produces capsular and secreted polysaccharides with similar pathogenic properties to those of C. neoformans. Scientific Reports, 2017, 7, 46768.	1.6	17
34	Characterization of the antifungal functions of a WGA-Fc (IgG2a) fusion protein binding to cell wall chitin oligomers. Scientific Reports, 2017, 7, 12187.	1.6	34
35	The hidden pathogenic potential of environmental fungi. Future Microbiology, 2017, 12, 1533-1540.	1.0	30
36	Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme and Microbial Technology, 2017, 97, 114-121.	1.6	94

Susana Frases

#	Article	IF	CITATIONS
37	Comprehensive analysis of the cellulolytic system reveals its potential for deconstruction of lignocellulosic biomass in a novel Streptomyces sp Applied Microbiology and Biotechnology, 2017, 101, 301-319.	1.7	18
38	Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study. Frontiers in Microbiology, 2017, 8, 1568.	1.5	40
39	Geometrical Distribution of Cryptococcus neoformans Mediates Flower-Like Biofilm Development. Frontiers in Microbiology, 2017, 8, 2534.	1.5	13
40	Analysis of Yeast Extracellular Vesicles. Methods in Molecular Biology, 2016, 1459, 175-190.	0.4	24
41	Rheological properties of cells measured by optical tweezers. BMC Biophysics, 2016, 9, 5.	4.4	64
42	Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection. Scientific Reports, 2016, 6, 21765.	1.6	26
43	Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Advances, 2016, 6, 9893-9904.	1.7	90
44	Cryptococcus neoformans capsular polysaccharides form branched and complex filamentous networks viewed by high-resolution microscopy. Journal of Structural Biology, 2016, 193, 75-82.	1.3	26
45	Networks of fibers and factors: regulation of capsule formation in Cryptococcus neoformans. F1000Research, 2016, 5, 1786.	0.8	11
46	The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools. Frontiers in Microbiology, 2015, 6, 640.	1.5	15
47	Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Frontiers in Microbiology, 2015, 6, 860.	1.5	42
48	Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. MBio, 2015, 6, e00647.	1.8	124
49	Probing the Casimir force with optical tweezers. Europhysics Letters, 2015, 112, 44001.	0.7	56
50	Compositional and immunobiological analyses of extracellular vesicles released by <i>Candida albicans</i> . Cellular Microbiology, 2015, 17, 389-407.	1.1	242
51	Pathogenicity of Cryptococcus neoformans: an Evolutionary Perspective. , 2014, , 581-590.		1
52	A Role for LHC1 in Higher Order Structure and Complement Binding of the Cryptococcus neoformans Capsule. PLoS Pathogens, 2014, 10, e1004037.	2.1	28
53	Role of the Apt1 Protein in Polysaccharide Secretion by Cryptococcus neoformans. Eukaryotic Cell, 2014, 13, 715-726.	3.4	61
54	<i>Cryptococcus neoformans</i> glucuronoxylomannan fractions of different molecular masses are functionally distinct. Future Microbiology, 2014, 9, 147-161.	1.0	30

SUSANA FRASES

#	Article	IF	CITATIONS
55	Pyomelanin production: a rare phenotype in Acinetobacter baumannii. Journal of Medical Microbiology, 2014, 63, 152-154.	0.7	11
56	The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex Scientific Reports, 2014, 4, 6198.	1.6	26
57	Fluconazole Alters the Polysaccharide Capsule of Cryptococcus gattii and Leads to Distinct Behaviors in Murine Cryptococcosis. PLoS ONE, 2014, 9, e112669.	1.1	36
58	Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis. Fungal Genetics and Biology, 2013, 60, 64-73.	0.9	31
59	Methamphetamine Enhances Cryptococcus neoformans Pulmonary Infection and Dissemination to the Brain. MBio, 2013, 4, .	1.8	35
60	Methamphetamine Alters Blood Brain Barrier Protein Expression in Mice, Facilitating Central Nervous System Infection by Neurotropic Cryptococcus neoformans. Journal of Infectious Diseases, 2013, 208, 699-704.	1.9	40
61	Antibody Binding to <i>Cryptococcus neoformans</i> Impairs Budding by Altering Capsular Mechanical Properties. Journal of Immunology, 2013, 190, 317-323.	0.4	36
62	Biosynthesis and Functions of a Melanoid Pigment Produced by Species of the Sporothrix Complex in the Presence of <scp>l</scp> -Tyrosine. Applied and Environmental Microbiology, 2012, 78, 8623-8630.	1.4	71
63	Using Solid-State NMR To Monitor the Molecular Consequences of <i>Cryptococcus neoformans</i> Melanization with Different Catecholamine Precursors. Biochemistry, 2012, 51, 6080-6088.	1.2	42
64	Capsules from Pathogenic and Non-Pathogenic Cryptococcus spp. Manifest Significant Differences in Structure and Ability to Protect against Phagocytic Cells. PLoS ONE, 2012, 7, e29561.	1.1	61
65	Biophysical Methods for the Study of Microbial Surfaces. Frontiers in Microbiology, 2011, 2, 207.	1.5	12
66	Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Molecular Microbiology, 2011, 79, 1101-1117.	1.2	60
67	Effects of microplusin, a copper-chelating antimicrobial peptide, against Cryptococcus neoformans. FEMS Microbiology Letters, 2011, 324, 64-72.	0.7	30
68	Agglutination of <i>Histoplasma capsulatum</i> by IgG Monoclonal Antibodies against Hsp60 Impacts Macrophage Effector Functions. Infection and Immunity, 2011, 79, 918-927.	1.0	31
69	The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials, 2010, 31, 669-679.	5.7	119
70	Melanin-Covered Nanoparticles for Protection of Bone Marrow During Radiation Therapy of Cancer. International Journal of Radiation Oncology Biology Physics, 2010, 78, 1494-1502.	0.4	104
71	Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo. Cellular Microbiology, 2010, 12, 740-753.	1.1	47
72	Galactoxylomannans from Cryptococcus neoformans Varieties <i>neoformans</i> and <i>grubii</i> Are Structurally and Antigenically Variable. Eukaryotic Cell, 2010, 9, 1018-1028.	3.4	23

SUSANA FRASES

#	Article	IF	CITATIONS
73	<i>Bacillus anthracis</i> produces membrane-derived vesicles containing biologically active toxins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19002-19007.	3.3	340
74	Immunomodulatory Effects of Serotype B Glucuronoxylomannan from <i>Cryptococcus gattii</i> Correlate with Polysaccharide Diameter. Infection and Immunity, 2010, 78, 3861-3870.	1.0	73
75	Biogenesis of extracellular vesicles in yeast. Communicative and Integrative Biology, 2010, 3, 533-535.	0.6	41
76	Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis. PLoS ONE, 2010, 5, e11113.	1.1	215
77	The still obscure attributes of cryptococcal glucuronoxylomannan. Medical Mycology, 2009, 47, 783-788.	0.3	20
78	Galactoxylomannan-Mediated Immunological Paralysis Results from Specific B Cell Depletion in the Context of Widespread Immune System Damage. Journal of Immunology, 2009, 183, 3885-3894.	0.4	23
79	Lipophilic Dye Staining of <i>Cryptococcus neoformans</i> Extracellular Vesicles and Capsule. Eukaryotic Cell, 2009, 8, 1373-1380.	3.4	81
80	Role for Chitin and Chitooligomers in the Capsular Architecture of <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2009, 8, 1543-1553.	3.4	54
81	Monoclonal Antibodies to Heat Shock Protein 60 Alter the Pathogenesis of <i>Histoplasma capsulatum</i> . Infection and Immunity, 2009, 77, 1357-1367.	1.0	120
82	Molecular epidemiology of isolates of the Cryptococcus neoformans species complex from Spain. Revista Iberoamericana De Micologia, 2009, 26, 112-117.	0.4	22
83	Sec6â€dependent sorting of fungal extracellular exosomes and laccase of <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2009, 71, 1165-1176.	1.2	146
84	Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes and Infection, 2009, 11, 554-562.	1.0	47
85	Vesicle-associated melanization in Cryptococcus neoformans. Microbiology (United Kingdom), 2009, 155, 3860-3867.	0.7	142
86	Structural and functional properties of the Trichosporon asahii glucuronoxylomannan. Fungal Genetics and Biology, 2009, 46, 496-505.	0.9	49
87	Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Fungal Genetics and Biology, 2009, 46, 956-963.	0.9	59
88	The Elastic Properties of the Cryptococcus neoformans Capsule. Biophysical Journal, 2009, 97, 937-945.	0.2	38
89	Chapter 4 The Capsule of the Fungal Pathogen Cryptococcus neoformans. Advances in Applied Microbiology, 2009, 68, 133-216.	1.3	380
90	Capsule of <i>Cryptococcus neoformans</i> grows by enlargement of polysaccharide molecules. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1228-1233.	3.3	94

SUSANA FRASES

#	Article	IF	CITATIONS
91	Vesicular transport in <i>Histoplasma capsulatum</i> : an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cellular Microbiology, 2008, 10, 1695-1710.	1.1	329
92	Capsule enlargement in <i>Cryptococcus neoformans</i> confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cellular Microbiology, 2008, 10, 2043-2057.	1.1	219
93	Following Fungal Melanin Biosynthesis with Solid-State NMR: Biopolymer Molecular Structures and Possible Connections to Cell-Wall Polysaccharides. Biochemistry, 2008, 47, 4701-4710.	1.2	88
94	<i>Cryptococcus neoformans</i> Capsular Polysaccharide and Exopolysaccharide Fractions Manifest Physical, Chemical, and Antigenic Differences. Eukaryotic Cell, 2008, 7, 319-327.	3.4	104
95	Growth and Pigment Production on <scp>d</scp> -Tryptophan Medium by <i>Cryptococcus gattii</i> , <i>Cryptococcus neoformans</i> , and <i>Candida albicans</i> . Journal of Clinical Microbiology, 2008, 46, 255-264.	1.8	22
96	Self-Aggregation of Cryptococcus neoformans Capsular Glucuronoxylomannan Is Dependent on Divalent Cations. Eukaryotic Cell, 2007, 6, 1400-1410.	3.4	135
97	Cryptococcus neoformans Can Utilize the Bacterial Melanin Precursor Homogentisic Acid for Fungal Melanogenesis. Applied and Environmental Microbiology, 2007, 73, 615-621.	1.4	77
98	Cryptococcus neoformans laccase catalyses melanin synthesis from both d- and l-DOPA. Microbiology (United Kingdom), 2007, 153, 3954-3962.	0.7	123
99	Vesicular Polysaccharide Export in Cryptococcus neoformans Is a Eukaryotic Solution to the Problem of Fungal Trans-Cell Wall Transport. Eukaryotic Cell, 2007, 6, 48-59.	3.4	454
100	Induction by Klebsiella aerogenes of a Melanin-Like Pigment in Cryptococcus neoformans. Applied and Environmental Microbiology, 2006, 72, 1542-1550.	1.4	60
101	First Case of Human Cryptococcosis Due to Cryptococcus neoformans var. gattii in Spain. Journal of Clinical Microbiology, 2005, 43, 3548-3550.	1.8	52
102	Detection and Identification of Fungal Pathogens by PCR and by ITS2 and 5.8S Ribosomal DNA Typing in Ocular Infections. Journal of Clinical Microbiology, 2001, 39, 2873-2879.	1.8	274
103	The still obscure attributes of cryptococcal glucuronoxylomannan. Medical Mycology, 0, , 1-7.	0.3	2
104	New Insights in Dermatophytes: Microsporum spp. and Nannizzia spp Current Tropical Medicine Reports, 0, , 1.	1.6	1