
Thomas Kroj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192388/publications.pdf Version: 2024-02-01

THOMAS KROL

#	Article	IF	CITATIONS
1	New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nature Communications, 2022, 13, 1524.	12.8	47
2	Combining High-Pressure NMR and Geometrical Sampling to Obtain a Full Topological Description of Protein Folding Landscapes: Application to the Folding of Two MAX Effectors from Magnaporthe oryzae. International Journal of Molecular Sciences, 2022, 23, 5461.	4.1	3
3	Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays in Biochemistry, 2022, 66, 513-526.	4.7	11
4	The activity of the <scp>RGA5</scp> sensor <scp>NLR</scp> from rice requires binding of its integrated <scp>HMA</scp> domain to effectors but not <scp>HMA</scp> domain selfâ€interaction. Molecular Plant Pathology, 2022, 23, 1320-1330.	4.2	4
5	A novel robust and highâ€ŧhroughput method to measure cell death in <i>Nicotiana benthamiana</i> leaves by fluorescence imaging. Molecular Plant Pathology, 2021, 22, 1688-1696.	4.2	11
6	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	7.7	32
7	The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought. Frontiers in Plant Science, 2020, 11, 1265.	3.6	6
8	Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11637-11642.	7.1	94
9	Recognition of the <i>Magnaporthe oryzae</i> Effector AVR-Pia by the Decoy Domain of the Rice NLR Immune Receptor RGA5. Plant Cell, 2017, 29, 156-168.	6.6	114
10	Transposon-Mediated NLR Exile to the Pollen Allows Rice Blast Resistance without Yield Penalty. Molecular Plant, 2017, 10, 665-667.	8.3	3
11	Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae. Frontiers in Plant Science, 2017, 8, 431.	3.6	31
12	Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies. ELife, 2016, 5, .	6.0	67
13	Ectopic activation of the rice <scp>NLR</scp> heteropair <scp>RGA</scp> 4/ <scp>RGA</scp> 5 confers resistance to bacterial blight and bacterial leaf streak diseases. Plant Journal, 2016, 88, 43-55.	5.7	27
14	Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytologist, 2016, 210, 618-626.	7.3	232
15	Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biology, 2016, 16, 17.	3.6	180
16	Three wall-associated kinases required for rice basal immunity form protein complexes in the plasma membrane. Plant Signaling and Behavior, 2016, 11, e1149676.	2.4	20
17	Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. Plant Cell Reports, 2016, 35, 1169-1185.	5.6	32
18	Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence. PLoS Pathogens, 2016, 12, e1005457.	4.7	119

THOMAS KROJ

#	Article	IF	CITATIONS
19	Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi. PLoS Pathogens, 2015, 11, e1005228.	4.7	188
20	Deciphering Genome Content and Evolutionary Relationships of Isolates from the Fungus <i>Magnaporthe oryzae</i> Attacking Different Host Plants. Genome Biology and Evolution, 2015, 7, 2896-2912.	2.5	96
21	A novel conserved mechanism for plant NLR protein pairs: the ââ,¬Å"integrated decoyââ,¬Â•hypothesis. Frontiers in Plant Science, 2014, 5, 606.	3.6	324
22	The <scp>NB</scp> â€ <scp>LRR</scp> proteins <scp>RGA</scp> 4 and <scp>RGA</scp> 5 interact functionally and physically to confer disease resistance. EMBO Journal, 2014, 33, 1941-1959.	7.8	310
23	The <i><scp>M</scp>agnaporthe oryzae</i> effector <scp>AVR</scp> 1– <scp>CO</scp> 39 is translocated into rice cells independently of a fungalâ€derived machinery. Plant Journal, 2013, 74, 1-12.	5.7	91
24	The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the <i>Magnaporthe oryzae</i> Effectors AVR-Pia and AVR1-CO39 by Direct Binding Â. Plant Cell, 2013, 25, 1463-1481.	6.6	466
25	An Atypical Kinase under Balancing Selection Confers Broad-Spectrum Disease Resistance in Arabidopsis. PLoS Genetics, 2013, 9, e1003766.	3.5	117
26	Cinnamyl alcohol dehydrogenases and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology, 2010, 11, 83-92.	4.2	229
27	AvrAC _{Xcc8004} , a Type III Effector with a Leucine-Rich Repeat Domain from <i>Xanthomonas campestris</i> Pathovar campestris Confers Avirulence in Vascular Tissues of <i>Arabidopsis thaliana</i> Ecotype Col-0. Journal of Bacteriology, 2008, 190, 343-355.	2.2	84
28	Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana. PLoS ONE, 2006, 1, e123.	2.5	33
29	The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell, 2006, 18, 3289-3302.	6.6	391
30	Optimization of pathogenicity assays to study the <i>Arabidopsis thaliana</i> – <i>Xanthomonas campestris</i> pv. <i>campestris</i> pathosystem. Molecular Plant Pathology, 2005, 6, 327-333.	4.2	66
31	VASCULAR ASSOCIATED DEATH1, a Novel GRAM Domain–Containing Protein, Is a Regulator of Cell Death and Defense Responses in Vascular Tissues. Plant Cell, 2004, 16, 2217-2232.	6.6	129
32	An Arabidopsis mutant with altered hypersensitive response to Xanthomonas campestris pv. campestris, hxc1, displays a complex pathophenotype. Molecular Plant Pathology, 2004, 5, 453-464.	4.2	7
33	Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 2004, 561, 127-131.	2.8	144
34	Regulation of storage protein gene expression in Arabidopsis. Development (Cambridge), 2003, 130, 6065-6073.	2.5	244
35	Mitogen-activated Protein Kinases Play an Essential Role in Oxidative Burst-independent Expression of Pathogenesis-related Genes in Parsley. Journal of Biological Chemistry, 2003, 278, 2256-2264.	3.4	106
36	bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7, 106-111.	8.8	1,585

#	Article	IF	CITATIONS
37	Receptor-Mediated Activation of a MAP Kinase in Pathogen Defense of Plants. Science, 1997, 276, 2054-2057.	12.6	369
38	1H, 13C, 15ÂN backbone and side-chain NMR assignments for three MAX effectors from Magnaporthe oryzae. Biomolecular NMR Assignments, 0, , .	0.8	2