
Shai Shaham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature, 2016, 533, 416-419.	27.8	232
2	Glia Are Essential for Sensory Organ Function in <i>C. elegans</i> . Science, 2008, 322, 744-747.	12.6	182
3	DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration. Cell, 2009, 137, 344-355.	28.9	156
4	Behaviorally consequential astrocytic regulation of neural circuits. Neuron, 2021, 109, 576-596.	8.1	150
5	An Alternatively Spliced C. elegans ced-4 RNA Encodes a Novel Cell Death Inhibitor. Cell, 1996, 86, 201-208.	28.9	146
6	C. elegans daf-6 Encodes a Patched-Related Protein Required for Lumen Formation. Developmental Cell, 2005, 8, 893-906.	7.0	128
7	A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science, 2016, 353, 1434-1437.	12.6	116
8	A Morphologically Conserved Nonapoptotic Program Promotes Linker Cell Death in Caenorhabditis elegans. Developmental Cell, 2007, 12, 73-86.	7.0	101
9	The Clia of <i>Caenorhabditis elegans</i> . Glia, 2011, 59, 1253-1263.	4.9	101
10	Glia delimit shape changes of sensory neuron receptive endings in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 1371-1381.	2.5	89
11	<i>mls-2</i> and <i>vab-3</i> control glia development, <i>hlh-17</i> /Olig expression and glia-dependent neurite extension in <i>C. elegans</i> . Development (Cambridge), 2008, 135, 2263-2275.	2.5	84
12	Identification of Multiple Caenorhabditis elegansCaspases and Their Potential Roles in Proteolytic Cascades. Journal of Biological Chemistry, 1998, 273, 35109-35117.	3.4	80
13	Long-Term High-Resolution Imaging of Developing C.Âelegans Larvae with Microfluidics. Developmental Cell, 2017, 40, 202-214.	7.0	75
14	A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell, 2016, 165, 936-948.	28.9	74
15	Forward and reverse mutagenesis in C. elegans. WormBook, 2014, , 1-26.	5.3	72
16	Control of Nonapoptotic Developmental Cell Death in <i>Caenorhabditis elegans</i> by a Polyglutamine-Repeat Protein. Science, 2012, 335, 970-973.	12.6	69
17	Related F-box proteins control cell death in <i>Caenorhabditis elegans</i> and human lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3943-3948.	7.1	57
18	Glia-Neuron Interactions in <i>Caenorhabditis elegans</i> . Annual Review of Neuroscience, 2019, 42, 149-168.	10.7	55

SHAI SHAHAM

#	Article	IF	CITATIONS
19	Chemosensory organs as models of neuronal synapses. Nature Reviews Neuroscience, 2010, 11, 212-217.	10.2	54
20	Glial Development and Function in the Nervous System of <i>Caenorhabditis elegans</i> . Cold Spring Harbor Perspectives in Biology, 2015, 7, a020578.	5.5	54
21	Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nature Communications, 2019, 10, 1882.	12.8	54
22	PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C.Âelegans. Cell Reports, 2016, 15, 550-562.	6.4	52
23	Glia initiate brain assembly through noncanonical Chimaerin–Furin axon guidance in C. elegans. Nature Neuroscience, 2017, 20, 1350-1360.	14.8	52
24	FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. ELife, 2015, 4, .	6.0	52
25	Non-apoptotic cell death in animal development. Cell Death and Differentiation, 2017, 24, 1326-1336.	11.2	47
26	Glia Modulate a Neuronal Circuit for Locomotion Suppression during Sleep in C.Âelegans. Cell Reports, 2018, 22, 2575-2583.	6.4	45
27	Glia–Neuron Interactions in Nervous System Function and Development. Current Topics in Developmental Biology, 2005, 69, 39-66.	2.2	42
28	The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in <i>Caenorhabditis elegans</i> . Genetics, 2008, 178, 989-1002.	2.9	41
29	Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development (Cambridge), 2007, 134, 1357-1368.	2.5	40
30	Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nature Communications, 2017, 8, 14100.	12.8	38
31	Cell Death in C. elegans Development. Current Topics in Developmental Biology, 2015, 114, 1-42.	2.2	26
32	Transgenerational inheritance of sexual attractiveness via small RNAs enhances evolvability in C.Âelegans. Developmental Cell, 2022, 57, 298-309.e9.	7.0	24
33	Cell death in animal development. Development (Cambridge), 2020, 147, .	2.5	23
34	HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans. ELife, 2016, 5, .	6.0	22
35	EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. Nature Cell Biology, 2018, 20, 393-399.	10.3	19
36	Sensory Organ Remodeling in <i>Caenorhabditis elegans</i> Requires the Zinc-Finger Protein ZTF-16. Genetics, 2012, 190, 1405-1415.	2.9	18

Shai Shaham

#	Article	IF	CITATIONS
37	Ageâ€dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in <i>Caenorhabditis elegans</i> . Aging Cell, 2020, 19, e13146.	6.7	17
38	Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. ELife, 2021, 10, .	6.0	16
39	Transcriptional control of non-apoptotic developmental cell death in C. elegans. Cell Death and Differentiation, 2016, 23, 1985-1994.	11.2	15
40	RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death. Developmental Cell, 2018, 47, 222-238.e6.	7.0	14
41	IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans. Developmental Biology, 2017, 430, 105-112.	2.0	13
42	A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors. PLoS ONE, 2016, 11, e0164595.	2.5	11
43	Stress-Induced Neural Plasticity Mediated by Glial GPCR REMO-1 Promotes C.Âelegans Adaptive Behavior. Cell Reports, 2021, 34, 108607.	6.4	10
44	Lineage-specific control of convergent differentiation by a Forkhead repressor. Development (Cambridge), 2021, 148, .	2.5	9
45	Counting Mutagenized Genomes and Optimizing Genetic Screens in Caenorhabditis elegans. PLoS ONE, 2007, 2, e1117.	2.5	9
46	galign: A Tool for Rapid Genome Polymorphism Discovery. PLoS ONE, 2009, 4, e7188.	2.5	9
47	Apoptosis. Cell, 2003, 114, 659-661.	28.9	8
48	Worming into the cell: Viral reproduction in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3955-3956.	7.1	8
49	Noncanonical Cell Death in the Nematode Caenorhabditis elegans. Methods in Enzymology, 2014, 545, 157-180.	1.0	6
50	Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. PLoS ONE, 2018, 13, e0194861.	2.5	6
51	Nuclear hormone receptors promote gut and glia detoxifying enzyme induction and protect C.Âelegans from the mold P.Âbrevicompactum. Cell Reports, 2021, 37, 110166.	6.4	3
52	BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9/bcl-2 transcription. Development (Cambridge), 2021, 148, .	2.5	2
53	Development or Disease: Caspases Balance Growth and Immunity in C.Âelegans. Developmental Cell, 2020, 53, 259-260.	7.0	1