
Sara Fleury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4191865/publications.pdf Version: 2024-02-01

SADA FIFLIDY

#	Article	IF	CITATIONS
1	Toward improved sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+. Advances in Space Research, 2021, 68, 732-745.	2.6	13
2	The SARAL/AltiKa mission: A step forward to the future of altimetry. Advances in Space Research, 2021, 68, 808-828.	2.6	21
3	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
4	Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements. Cryosphere, 2021, 15, 5483-5512.	3.9	17
5	The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sensing, 2020, 12, 1763.	4.0	31
6	CryoSat Ice Baseline-D validation and evolutions. Cryosphere, 2020, 14, 1889-1907.	3.9	26
7	The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. Cryosphere, 2020, 14, 2235-2251.	3.9	48
8	Retrieving Sea Level and Freeboard in the Arctic: A Review of Current Radar Altimetry Methodologies and Future Perspectives. Remote Sensing, 2019, 11, 881.	4.0	40
9	Coastal applications from nadir altimetry: Example of the X-TRACK regional products. Advances in Space Research, 2017, 59, 936-953.	2.6	109
10	Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval. Cryosphere, 2017, 11, 2059-2073.	3.9	39
11	Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions. Remote Sensing of Environment, 2016, 186, 339-349.	11.0	64
12	An ERS-2 altimetry reprocessing compatible with ENVISAT for long-term land and ice sheets studies. Remote Sensing of Environment, 2016, 184, 558-581.	11.0	34
13	An Index to Distinguish Surface- and Subsurface-Intensified Vortices from Surface Observations. Journal of Physical Oceanography, 2016, 46, 2529-2552.	1.7	61
14	Sea Ice Leads Detection Using SARAL/AltiKa Altimeter. Marine Geodesy, 2015, 38, 522-533.	2.0	25
15	Lateral stirring of large-scale tracer fields by altimetry. Ocean Dynamics, 2014, 64, 61-78.	2.2	8
16	Absolute Calibration of Jason Radar Altimeters from GPS Kinematic Campaigns Over Lake Issykkul. Marine Geodesy, 2011, 34, 291-318.	2.0	41
17	Rackham: An Interactive Robot-Guide. , 2006, , .		34
18	Autonomous Rover Navigation on Unknown Terrains: Functions and Integration. International Journal of Robotics Research, 2002, 21, 917-942.	8.5	145

SARA FLEURY

#	Article	IF	CITATIONS
19	Autonomous Rover Navigation on Unknown Terrains Functions and Integration. , 2001, , 501-510.		25
20	Multi-robot cooperation in the MARTHA project. IEEE Robotics and Automation Magazine, 1998, 5, 36-47.	2.0	180
21	An Architecture for Autonomy. International Journal of Robotics Research, 1998, 17, 315-337.	8.5	357
22	A general framework for multi-robot cooperation and its implementation on a set of three hilare robots. , 1997, , 26-39.		8
23	Primitives for smoothing mobile robot trajectories. IEEE Transactions on Automation Science and Engineering, 1995, 11, 441-448.	2.3	109
24	Autonomous navigation in natural environments. , 1994, , 423-443.		8
25	<title>Absolute external mobile robot localization using a single image</title> . , 1993, 1831, 131.		5
26	Design of a modular architecture for autonomous robot. , 0, , .		37
27	Autonomous navigation in outdoor environment: adaptive approach and experiment. , 0, , .		26
28	Ten autonomous mobile robots (and even more) in a route network like environment. , 0, , .		13
29	Specification and validation of a control architecture for autonomous mobile robots. , 0, , .		9
30	Operating a large fleet of mobile robots using the plan-merging paradigm. , 0, , .		7
31	Robust path-following control with exponential stability for mobile robots. , O, , .		15
32	Supervision and interaction. , 0, , .		4

32 Supervision and interaction. , 0, , .