Huochun Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4191239/publications.pdf

Version: 2024-02-01

85 1,858 21 37
papers citations h-index g-index

88 88 1801
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence, 2017, 8, 1189-1202.	1.8	120
2	Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Scientific Reports, 2015, 5, 9833.	1.6	110
3	PAARâ€Rhs proteins harbor various Câ€terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environmental Microbiology, 2017, 19, 345-360.	1.8	105
4	Genomic and Epidemiological Characteristics Provide New Insights into the Phylogeographical and Spatiotemporal Spread of Porcine Epidemic Diarrhea Virus in Asia. Journal of Clinical Microbiology, 2015, 53, 1484-1492.	1.8	86
5	Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2. Frontiers in Cellular and Infection Microbiology, 2015, 5, 82.	1.8	64
6	Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways. Infection and Immunity, 2014, 82, 3867-3879.	1.0	63
7	The <i>Streptococcus suis</i> transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. Rna, 2014, 20, 882-898.	1.6	59
8	Novel Variant Serotype of Streptococcus suis Isolated from Piglets with Meningitis. Applied and Environmental Microbiology, 2015, 81, 976-985.	1.4	57
9	Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microbial Pathogenesis, 2017, 107, 29-37.	1.3	57
10	Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island. Gene, 2014, 535, 156-164.	1.0	45
11	Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ- like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Veterinary Microbiology, 2017, 205, 26-33.	0.8	42
12	Diverse toxic effectors are harbored by vgrG islands for interbacterial antagonism in type VI secretion system. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1635-1643.	1.1	42
13	Alterations in gp37 Expand the Host Range of a T4-Like Phage. Applied and Environmental Microbiology, 2017, 83, .	1.4	41
14	Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infection, Genetics and Evolution, 2013, 20, 454-464.	1.0	29
15	Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene, 2016, 582, 47-58.	1.0	29
16	Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model. Veterinary Microbiology, 2017, 199, 111-119.	0.8	29
17	Multilocus sequence typing and virulence genotyping of Streptococcus suis serotype 9 isolates revealed high genetic and virulence diversity. FEMS Microbiology Letters, 2017, 364, .	0.7	28
18	Immunoproteomics selection of cross-protective vaccine candidates from Riemerella anatipestifer serotypes 1 and 2. Veterinary Microbiology, 2013, 162, 850-857.	0.8	27

#	Article	IF	CITATIONS
19	The non-conserved region of MRP is involved in the virulence of <i>Streptococcus suis </i> Serotype 2. Virulence, 2017, 8, 1274-1289.	1.8	25
20	Characterization and virulence clustering analysis of extraintestinal pathogenic Escherichia coli isolated from swine in China. BMC Veterinary Research, 2017, 13, 94.	0.7	25
21	<i>Streptococcus suis</i> synthesizes deoxyadenosine and adenosine by 5'-nucleotidase to dampen host immune responses. Virulence, 2018, 9, 1509-1520.	1.8	24
22	Virulence genotyping and population analysis of Streptococcus suis serotype 2 isolates from China. Infection, Genetics and Evolution, 2015, 36, 483-489.	1.0	23
23	High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome. Veterinary Microbiology, 2018, 227, 133-142.	0.8	23
24	Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in <i>Streptococcus suis</i> . Future Microbiology, 2019, 14, 207-222.	1.0	23
25	A novel integrative conjugative element mediates transfer of multi-drug resistance between Streptococcus suis strains of different serotypes. Veterinary Microbiology, 2019, 229, 110-116.	0.8	23
26	Pre-Absorbed Immunoproteomics: A Novel Method for the Detection of Streptococcus suis Surface Proteins. PLoS ONE, 2011, 6, e21234.	1.1	23
27	Isolation and characterization of a T4â€like phage with a relatively wide host range within <i>Escherichia coli</i> . Journal of Basic Microbiology, 2016, 56, 405-421.	1.8	22
28	Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways. Veterinary Research, 2017, 48, 44.	1.1	22
29	Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli. Research in Veterinary Science, 2017, 115, 109-116.	0.9	21
30	Extraintestinal pathogenic <i>Escherichia coli</i> increase extracytoplasmic polysaccharide biosynthesis for serum resistance in response to bloodstream signals. Molecular Microbiology, 2018, 110, 689-706.	1.2	21
31	Identification of six novel capsular polysaccharide loci (<scp>NCL</scp>) from <i>StreptococcusÂsuis</i> multidrug resistant nonâ€typeable strains and the pathogenic characteristic of strains carrying new <scp>NCL</scp> s. Transboundary and Emerging Diseases, 2019, 66, 995-1003.	1.3	21
32	Fibronectin-/fibrinogen-binding protein (FBPS) is not a critical virulence factor for the Streptococcus suis serotype 2 strain ZY05719. Veterinary Microbiology, 2017, 208, 38-46.	0.8	20
33	Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic <i>Escherichia coli</i> i>Escherichia coli	3.0	20
34	A Streptococcus suis LysM domain surface protein contributes to bacterial virulence. Veterinary Microbiology, 2016, 187, 64-69.	0.8	19
35	Efficacy of Phage Therapy in Controlling Rabbit Colibacillosis and Changes in Cecal Microbiota. Frontiers in Microbiology, 2017, 8, 957.	1.5	19
36	Inducible Prophage Mutant of Escherichia coli Can Lyse New Host and the Key Sites of Receptor Recognition Identification. Frontiers in Microbiology, 2017, 8, 147.	1.5	18

#	Article	IF	CITATIONS
37	Bacitracin resistance and enhanced virulence of Streptococcus suis via a novel efflux pump. BMC Veterinary Research, 2019, 15, 377.	0.7	18
38	Role of ClpX and ClpP in Streptococcus suis serotype 2 stress tolerance and virulence. Microbiological Research, 2019, 223-225, 99-109.	2.5	18
39	Development of a differentiable virus via a spontaneous deletion in the nsp2 region associated with cell adaptation of porcine reproductive and respiratory syndrome virus. Virus Research, 2013, 171, 150-160.	1.1	17
40	Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism. Veterinary Microbiology, 2017, 205, 6-13.	0.8	17
41	The Two-Component Signaling System VraSR _{ss} Is Critical for Multidrug Resistance and Full Virulence in Streptococcus suis Serotype 2. Infection and Immunity, 2018, 86, .	1.0	17
42	SssP1, a Streptococcus suis Fimbria-Like Protein Transported by the SecY2/A2 System, Contributes to Bacterial Virulence. Applied and Environmental Microbiology, 2018, 84, .	1.4	16
43	ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105. Frontiers in Microbiology, 2019, 10, 274.	1.5	16
44	Antibiotics Resistance Genes Screening and Comparative Genomics Analysis of Commensal <i>Escherichia coli</i> Isolated from Poultry Farms between China and Sudan. BioMed Research International, 2018, 2018, 1-9.	0.9	15
45	Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1. Proteome Science, 2011, 9, 32.	0.7	14
46	Immunoproteomic identification of 11 novel immunoreactive proteins of Riemerella anatipestiferserotype 2. FEMS Immunology and Medical Microbiology, 2012, 65, 84-95.	2.7	14
47	The population structure, antimicrobial resistance, and pathogenicity of Streptococcus suis cps31. Veterinary Microbiology, 2021, 259, 109149.	0.8	14
48	Acute meningitis of piglets and mice caused by co-infected with Streptococcus suis and Aerococcus viridans. Microbial Pathogenesis, 2017, 106, 60-64.	1.3	13
49	A novel autolysin AtlASS mediates bacterial cell separation during cell division and contributes to full virulence in Streptococcus suis. Veterinary Microbiology, 2019, 234, 92-100.	0.8	13
50	The Novel Streptococcal Transcriptional Regulator XtgS Negatively Regulates Bacterial Virulence and Directly Represses PseP Transcription. Infection and Immunity, 2020, 88, .	1.0	13
51	Antibacterial effect of porcine PTX3 against Streptococcus suis type 2 infection. Microbial Pathogenesis, 2015, 89, 128-139.	1.3	12
52	Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria. Microbiological Research, 2017, 196, 17-25.	2.5	12
53	Infection and adaption-based proteomic changes of Streptococcus suis serotype 2 in a pig model. Journal of Proteomics, 2018, 180, 41-52.	1.2	12
54	The antimicrobial systems of <i>Streptococcus suis</i> promote niche competition in pig tonsils. Virulence, 2022, 13, 781-793.	1.8	12

#	Article	IF	CITATIONS
55	Identification of Candidate Susceptibility and Resistance Genes of Mice Infected with Streptococcus suis Type 2. PLoS ONE, 2012, 7, e32150.	1.1	11
56	Uropathogenic Escherichia coli preferentially utilize metabolites in urine for nucleotide biosynthesis through salvage pathways. International Journal of Medical Microbiology, 2018, 308, 990-999.	1.5	10
57	Identification of an Autorepressing Two-Component Signaling System That Modulates Virulence in Streptococcus suis Serotype 2. Infection and Immunity, 2019, 87, .	1.0	10
58	Pathogenic investigations of <i>Streptococcus pasteurianus</i> , an underreported zoonotic pathogen, isolated from a diseased piglet with meningitis. Transboundary and Emerging Diseases, 2022, 69, 2609-2620.	1.3	10
59	Fifteen novel immunoreactive proteins of Chinese virulent Haemophilus parasuis serotype 5 verified by an immunoproteomic assay. Folia Microbiologica, 2015, 60, 81-87.	1.1	8
60	The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper. Microbial Pathogenesis, 2017, 111, 388-394.	1.3	8
61	Intracranial Subarachnoidal Route of Infection for Investigating Roles of Streptococcus suis Biofilms in Meningitis in a Mouse Infection Model. Journal of Visualized Experiments, 2018, , .	0.2	8
62	Comparative genetic analyses provide clues about capsule switching in Streptococcus suis 2 strains with different virulence levels and genetic backgrounds. Microbiological Research, 2021, 250, 126814.	2.5	8
63	YSIRK-G/S-directed translocation is required for <i>Streptococcus suis</i> to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence, 2020, 11, 1539-1556.	1.8	7
64	Whole-Genome Sequence of Streptococcus suis Serotype 4 Reference Strain 6407. Genome Announcements, 2014, 2, .	0.8	6
65	Identification of a virulence-related surface protein XF in piscine Streptococcus agalactiaeby pre-absorbed immunoproteomics. BMC Veterinary Research, 2014, 10, 259.	0.7	6
66	SBP1 is an adhesion-associated factor without the involvement of virulence in Streptococcus suis serotype 2. Microbial Pathogenesis, 2018, 122, 90-97.	1.3	6
67	XRE family transcriptional regulator XtrSs modulates Streptococcus suis fitness under hydrogen peroxide stress. Archives of Microbiology, 2022, 204, 244.	1.0	6
68	Isolation and Identification of Two Clinical Strains of the Novel Genotype < i> Enterovirus E5 < /i> in China. Microbiology Spectrum, 2022, 10, .	1.2	6
69	Characterization and complete genome sequence analysis of Staphylococcus aureus bacteriophage JS01. Virus Genes, 2015, 50, 345-348.	0.7	5
70	Screening virulence factors of porcine extraintestinal pathogenic <i>Escherichia coli</i> (an emerging) Tj ETQq0 C	0 rgBT /C 1.3	overlock 10 Tf 5
71	CrfP, a fratricide protein, contributes to natural transformation in Streptococcus suis. Veterinary Research, 2021, 52, 50.	1.1	5
72	Screening Host Antiviral Proteins under the Enhanced Immune Responses Induced by a Variant Strain of Porcine Epidemic Diarrhea Virus. Microbiology Spectrum, 2022, 10, .	1.2	5

#	Article	IF	CITATIONS
73	Coronavirus as an Agent of Neonatal Calf Diarrhea in a Chinese Dairy Cattle Farm. Zoonoses and Public Health, 1991, 38, 473-476.	1.4	4
74	Identification of a novel bacterial taxon associated with bovine mastitis showing a close evolutionary relationship with Elizabethkingia sp. Microbiological Research, 2020, 236, 126443.	2.5	4
75	Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens, 2020, 9, 387.	1.2	4
76	Isolation and Identification of Type F Bovine Enterovirus from Clinical Cattle with Diarrhoea. Viruses, 2021, 13, 2217.	1.5	4
77	Identification of a novel broad-spectrum endolysin, Ply0643, with high antibacterial activity in mouse models of streptococcal bacteriaemia and mastitis. Research in Veterinary Science, 2022, 143, 41-49.	0.9	4
78	Insight Into the Virulence Related Secretion Systems, Fimbriae, and Toxins in O2:K1 Escherichia coli Isolated From Bovine Mastitis. Frontiers in Veterinary Science, 2021, 8, 622725.	0.9	3
79	An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Frontiers in Microbiology, 2021, 12, 671706.	1.5	3
80	Preferential use of carbon central metabolism and anaerobic respiratory chains in porcine extraintestinal pathogenic Escherichia coli during bloodstream infection. Veterinary Microbiology, 2020, 249, 108830.	0.8	3
81	The effectiveness of extended binding affinity of prophage lysin PlyARI against Streptococcus suis infection. Archives of Microbiology, 2021, 203, 5163-5172.	1.0	2
82	Construction and Characterization of a Streptococcus suis Serotype 2 Recombinant Expressing Enhanced Green Fluorescent Protein. PLoS ONE, 2012, 7, e39697.	1.1	1
83	The characteristics of population structure and antimicrobial resistance of <i>Streptococcus suis</i> serotype 8, a nonâ€negligible pathotype. Transboundary and Emerging Diseases, 2022, 69, .	1.3	1
84	Identification and Detection of Serotype-Specific Genes: Effective Serotyping of Streptococcus suis. Current Clinical Microbiology Reports, 2017, 4, 29-35.	1.8	0
85	Transcriptional regulator XtgS is involved in iron transition and attenuates the virulence of Streptococcus agalactiae. Research in Veterinary Science, 2021, 138, 109-115.	0.9	0