Jinhong Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419047/publications.pdf

Version: 2024-02-01

623188 794141 2,365 19 14 19 citations g-index h-index papers 19 19 19 5066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Graphene–Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials, 2011, 1, 917-922.	10.2	831
2	The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics, 2012, 213, 1060-1077.	1.1	537
3	25th Anniversary Article: Carbon Nanotube―and Grapheneâ€Based Transparent Conductive Films for Optoelectronic Devices. Advanced Materials, 2014, 26, 1958-1991.	11.1	350
4	Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017, 8, 14560.	5.8	184
5	Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Scientific Reports, 2014, 4, 6684.	1.6	89
6	Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Research, 2013, 6, 842-852.	5.8	68
7	Additiveâ€Free Dispersion of Singleâ€Walled Carbon Nanotubes and Its Application for Transparent Conductive Films. Advanced Functional Materials, 2011, 21, 2330-2337.	7.8	51
8	Enhanced adsorption of malachite green onto carbon nanotube/polyaniline composites. Journal of Applied Polymer Science, 2013, 127, 2475-2482.	1.3	43
9	Electrical conductivity and microwave absorbing properties of nickelâ€coated multiwalled carbon nanotubes/poly(phthalazinone ether sulfone ketone)s composites. Polymer Engineering and Science, 2008, 48, 1007-1014.	1.5	37
10	Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction. Nano Research, 2015, 8, 3954-3962.	5.8	37
11	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	7.3	29
12	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25991-25998.	3.3	28
13	Preparation and characterization of functionalized carbon nanotubes/poly(phthalazinone ether) Tj ETQq1 1 0.784	-314 rgBT	/Qyerlock <mark>10</mark>
14	Advances in Flexible Optoelectronics Based on Chemical Vapor Depositionâ€Grown Graphene. Advanced Functional Materials, 2022, 32, .	7.8	19
15	Grapheneâ€Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. Solar Rrl, 2019, 3, 1900042.	3.1	13
16	Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates. ACS Omega, 2021, 6, 34301-34313.	1.6	11
17	Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu. ACS Applied Materials & Diterfaces, 2019, 11, 17629-17636.	4.0	10
18	Investigation on the thermal conductivity of HDPE/MWCNT composites by laser pulse method. Science in China Series D: Earth Sciences, 2009, 52, 2767-2772.	0.9	6

#	Article	IF	CITATIONS
19	Fabrication of Largeâ€Area Uniform Nanometerâ€Thick Functional Layers and Their Stacks for Flexible Quantum Dot Lightâ€Emitting Diodes. Small Methods, 2022, 6, e2101030.	4.6	3