Min Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4190116/publications.pdf

Version: 2024-02-01

474 papers 18,755 citations

64 h-index 27345 106 g-index

489 all docs 489 docs citations

489 times ranked 7920 citing authors

#	Article	IF	Citations
1	Recent Advances in Organocatalytic Asymmetric Morita–Baylis–Hillman/aza-Morita–Baylis–Hillman Reactions. Chemical Reviews, 2013, 113, 6659-6690.	23.0	635
2	Multifunctional Chiral Phosphine Organocatalysts in Catalytic Asymmetric Moritaâ^'Baylisâ^'Hillman and Related Reactions. Accounts of Chemical Research, 2010, 43, 1005-1018.	7.6	516
3	Chiral Phosphine Lewis Bases Catalyzed Asymmetric aza-Baylisâ''Hillman Reaction of N-Sulfonated Imines with Activated Olefins. Journal of the American Chemical Society, 2005, 127, 3790-3800.	6.6	335
4	Gold-Catalyzed Tandem Reactions of Methylenecyclopropanes and Vinylidenecyclopropanes. Accounts of Chemical Research, 2014, 47, 913-924.	7.6	299
5	Recent developments of cyclopropene chemistry. Chemical Society Reviews, 2011, 40, 5534.	18.7	286
6	Development of asymmetric phosphine-promoted annulations of allenes with electron-deficient olefins and imines. Chemical Communications, 2012, 48, 1724-1732.	2.2	285
7	Azaâ€Baylis–Hillman Reactions and Their Synthetic Applications. European Journal of Organic Chemistry, 2007, 2007, 2905-2916.	1.2	236
8	Catalytic, Asymmetric Baylis–Hillman Reaction of Imines with Methyl Vinyl Ketone and Methyl Acrylate. Angewandte Chemie - International Edition, 2002, 41, 4507-4510.	7.2	226
9	Rapid Generation of Molecular Complexity in the Lewis or BrÃ, nsted Acid-Mediated Reactions of Methylenecyclopropanes. Accounts of Chemical Research, 2012, 45, 641-652.	7.6	213
10	Recent Advances in the Synthesis of Heterocycles and Related Substances Based on αâ€lmino Rhodium Carbene Complexes Derived from <i>N</i> â€Sulfonylâ€1,2,3â€triazoles. Chemistry - A European Journal, 2016, 22, 17910-17924.	1.7	196
11	Synthesis of novel axially chiral Rh–NHC complexes derived from BINAM and application in the enantioselective hydrosilylation of methyl ketones. Chemical Communications, 2003, , 2916-2917.	2.2	193
12	Strained small rings in gold-catalyzed rapid chemical transformations. Chemical Society Reviews, 2012, 41, 3318-3339.	18.7	190
13	Chemical Fixation of Carbon Dioxide Co-Catalyzed by a Combination of Schiff Bases or Phenols and Organic Bases. European Journal of Organic Chemistry, 2004, 2004, 3080-3089.	1.2	181
14	Chemistry of Vinylidenecyclopropanes. Chemical Reviews, 2010, 110, 5883-5913.	23.0	177
15	Applications of Chiral Phosphineâ€Based Organocatalysts in Catalytic Asymmetric Reactions. Chemistry - an Asian Journal, 2014, 9, 2720-2734.	1.7	170
16	Phenol and Organic Bases Co-Catalyzed Chemical Fixation of Carbon Dioxide with Terminal Epoxides to Form Cyclic Carbonates. Advanced Synthesis and Catalysis, 2003, 345, 337-340.	2.1	169
17	Chiral phosphine Lewis base catalyzed asymmetric aza-Baylisâ€"Hillman reaction of N-sulfonated imines with methyl vinyl ketone and phenyl acrylate. Chemical Communications, 2003, , 1310-1311.	2.2	169
18	Rhodium(II)â€Catalyzed Intramolecular Annulation of 1â€Sulfonylâ€1,2,3â€Triazoles with Pyrrole and Indole Rings: Facile Synthesis of Nâ€Bridgehead Azepine Skeletons. Angewandte Chemie - International Edition, 2014, 53, 5142-5146.	7.2	168

#	Article	IF	CITATIONS
19	Divergent Synthesis of Carbo- and Heterocycles via Gold-Catalyzed Reactions. ACS Catalysis, 2016, 6, 2515-2524.	5.5	157
20	Lu's $[3+2]$ cycloaddition of allenes with electrophiles: discovery, development and synthetic application. Organic Chemistry Frontiers, 2017, 4, 1876-1890.	2.3	155
21	Transition-Metal-Catalyzed Reactions of Propargylamine with Carbon Dioxide and Carbon Disulfide. Journal of Organic Chemistry, 2002, 67, 16-21.	1.7	150
22	Aza-Baylisâ^'Hillman Reactions of N-Tosylated Aldimines with Activated Allenes and Alkynes in the Presence of Various Lewis Base Promoters. Journal of Organic Chemistry, 2005, 70, 9975-9984.	1.7	149
23	Palladium-Catalyzed Ring Enlargement of Aryl-Substituted Methylenecyclopropanes to Cyclobutenes. Journal of the American Chemical Society, 2006, 128, 7430-7431.	6.6	149
24	Rhodium(II)â€Catalyzed Intramolecular Cycloisomerizations of Methylenecyclopropanes with <i>N</i> â€Sulfonyl 1,2,3â€Triazoles. Angewandte Chemie - International Edition, 2014, 53, 6645-6649.	7.2	126
25	Catalytic, Asymmetric Aza-Baylis-Hillman Reaction of N-Sulfonated Imines with Activated Olefins by Quinidine-Derived Chiral Amines. Chemistry - A European Journal, 2005, 11, 1794-1802.	1.7	125
26	Chiral Thioureaâ€Phosphine Organocatalysts in the Asymmetric Azaâ€Morita–Baylis–Hillman Reaction. Advanced Synthesis and Catalysis, 2007, 349, 2129-2135.	2.1	125
27	Phosphine- and Nitrogen-Containing Lewis Base Catalyzed Highly Regioselective and Geometric Selective Cyclization of Isatin Derived Electron-Deficient Alkenes with Ethyl 2,3-Butadienoate. Organic Letters, 2011, 13, 1142-1145.	2.4	123
28	Gold(I)-Catalyzed Domino Ring-Opening Ring-Closing Hydroamination of Methylenecyclopropanes (MCPs) with Sulfonamides:  Facile Preparation of Pyrrolidine Derivatives. Organic Letters, 2006, 8, 4043-4046.	2.4	122
29	Gold(I) atalyzed Cycloisomerization of Arylvinylcyclopropenes: An Efficient Synthetic Protocol for the Construction of Indene Skeletons. Chemistry - A European Journal, 2008, 14, 10219-10222.	1.7	115
30	Catalyst-Dependent Stereodivergent and Regioselective Synthesis of Indole-Fused Heterocycles through Formal Cycloadditions of Indolyl-Allenes. Journal of the American Chemical Society, 2015, 137, 8131-8137.	6.6	109
31	Asymmetric [3+2] annulation of allenes with maleimides catalyzed by dipeptide-derived phosphines: facile creation of functionalized bicyclic cyclopentenes containing two tertiary stereogenic centers. Chemical Communications, 2012, 48, 970-972.	2.2	108
32	Asymmetric Aza-Morita–BaylisHillman Reaction ofN-Sulfonated Imines with Activated Olefins Catalyzed by Chiral Phosphine Lewis Bases Bearing Multiple Phenol Groups. Advanced Synthesis and Catalysis, 2006, 348, 973-979.	2.1	105
33	Asymmetric Morita-Baylis-Hillman Reaction of Arylaldehydes with 2-Cyclohexen-1-one Catalyzed by Chiral Bis(Thio)urea and DABCO. Organic Letters, 2008, 10, 1043-1046.	2.4	102
34	Lewis and Bronsted Acid Mediated Ring-Opening Reactions of Methylenecyclopropanes and Further Transformation of the Ring-Opened Products. Current Organic Chemistry, 2007, 11, 1135-1153.	0.9	98
35	Lewis Acid Catalyzed Rearrangement of Vinylcyclopropenes for the Construction of Naphthalene and Indene Skeletons. Organic Letters, 2007, 9, 117-120.	2.4	97
36	Asymmetric catalytic aza-Morita–Baylis–Hillman reaction for the synthesis of 3-substituted-3-aminooxindoles with chiral quaternary carbon centers. Organic and Biomolecular Chemistry, 2013, 11, 1921.	1.5	97

#	Article	IF	CITATIONS
37	Iron- or Copper-Catalyzed Trifluoromethylation of Acrylamide-Tethered Alkylidenecyclopropanes: Facile Synthesis of CF ₃ -Containing Polycyclic Benzazepine Derivatives. ACS Catalysis, 2016, 6, 526-531.	5.5	94
38	<i>Cinchona</i> Alkaloid Squaramide/AgOAc Cooperatively Catalyzed Diastereo- and Enantioselective Mannich/Cyclization Cascade Reaction of Isocyanoacetates and Cyclic Trifluoromethyl Ketimines. Organic Letters, 2014, 16, 4566-4569.	2.4	93
39	Lewis Acid-Mediated Cycloaddition of Methylenecyclopropanes with Aldehydes and Imines:  A Facile Access to Indene, THF, and Pyrrolidine Skeletons via Homoallylic Rearrangement Protocol. Organic Letters, 2004, 6, 1175-1178.	2.4	91
40	Construction of adjacent spiro-quaternary and tertiary stereocenters through phosphine-catalyzed asymmetric [3+2] annulation of allenoates with alkylidene azlactones. Chemical Communications, 2012, 48, 2764.	2.2	90
41	Gold-Catalyzed Conversion of Highly Strained Compounds. Chemical Reviews, 2021, 121, 8685-8755.	23.0	90
42	Titanium(IV) Chloride and the Amine-Promoted Baylisâ^'Hillman Reaction. Organic Letters, 2000, 2, 2397-2400.	2.4	88
43	A Phosphineâ€Catalyzed Novel Asymmetric [3+2] Cycloaddition of C,Nâ€Cyclic Azomethine Imines with Î'â€Substituted Allenoates. Chemistry - A European Journal, 2014, 20, 15325-15329.	1.7	87
44	Recent advances in the chemical transformations of functionalized alkylidenecyclopropanes (FACPs). Chemical Communications, 2017, 53, 5935-5945.	2.2	82
45	Lewis Acid-Catalyzed Ring-Opening Reactions of Methylenecyclopropanes with Alcoholic or Acidic Nucleophiles. Organic Letters, 2002, 4, 2145-2148.	2.4	80
46	Enantioselective Intermolecular Rauhut–Currier Reaction of Electronâ€Deficient Allenes with Maleimides. Advanced Synthesis and Catalysis, 2011, 353, 1973-1979.	2.1	79
47	Enantioselective Synthesis of Highly Functionalized Trifluoromethylâ€Bearing Cyclopentenes: Asymmetric [3+2] Annulation of Morita–Baylis–Hillman Carbonates with Trifluoroethylidenemalonates Catalyzed by Multifunctional Thioureaâ€Phosphines. Advanced Synthesis and Catalysis, 2012, 354, 783-789.	2.1	79
48	Chiral phosphine-catalyzed tunable cycloaddition reactions of allenoates with benzofuranone-derived olefins for a highly regio-, diastereo- and enantioselective synthesis of spiro-benzofuranones. Chemical Science, 2015, 6, 7319-7325.	3.7	79
49	Chiral Bifunctional Thiourea–Phosphane Organocatalysts in Asymmetric Allylic Amination of Morita–Baylis–Hillman Acetates. European Journal of Organic Chemistry, 2011, 2011, 1956-1960.	1.2	77
50	Gold(I)â€Catalyzed Cycloisomerization of 1,6â€Diynes: Synthesis of 2,3â€Disubstituted 3â€Pyrroline Derivatives. Angewandte Chemie - International Edition, 2011, 50, 2583-2587.	7.2	77
51	Phosphine-Catalyzed [3 + 2] Cycloaddition of 4,4-Dicyano-2-methylenebut-3-enoates with Benzyl Buta-2,3-dienoate and Penta-3,4-dien-2-one. ACS Catalysis, 2013, 3, 507-512.	5 . 5	77
52	FeCl3-Catalyzed Aminohalogenation of Arylmethylenecyclopropanes and Arylvinylidenecyclopropanes and Corresponding Mechanistic Studies. Organic Letters, 2006, 8, 625-628.	2.4	73
53	Gold(I)-Catalyzed Three-Component Additions of 2-(Arylmethylene)cyclopropylcarbinols, Terminal Arynes, and Alcohols:  An Efficient Access to 3-Oxabicyclo[3.1.0]hexanes. Organic Letters, 2007, 9, 4917-4920.	2.4	73
54	Enantioselective Conjugate Addition of Dialkylzinc and Diphenylzinc to Enones Catalyzed by a Chiral Copper(I) Binaphthylthiophosphoramide or Binaphthylselenophosphoramide Ligand System. Chemistry - A European Journal, 2004, 10, 5507-5516.	1.7	72

#	Article	IF	CITATIONS
55	Copper(I)-Catalyzed Intramolecular Trifluoromethylation of Methylenecyclopropanes. Organic Letters, 2015, 17, 5994-5997.	2.4	72
56	Recent developments in cyclopropene chemistry. Chemical Communications, 2020, 56, 5457-5471.	2.2	71
57	Asymmetric catalytic aza-Morita–Baylis–Hillman reaction using chiral bifunctional phosphine amides as catalysts. Tetrahedron, 2008, 64, 1181-1186.	1.0	69
58	Synthesis of Chiral Bis(N-heterocyclic carbene) Palladium and Rhodium Complexes with 1,1′-Biphenyl Scaffold and Their Application in Asymmetric Catalysis. Organometallics, 2009, 28, 4416-4420.	1.1	69
59	Lewis Base Effects in the Baylisâ^'Hillman Reaction of Imines with Methyl Vinyl Ketone. European Journal of Organic Chemistry, 2002, 2002, 696-701.	1.2	68
60	Phosphine-Catalyzed Tandem Reaction of Allenoates with Nitroalkenes. Organic Letters, 2010, 12, 5024-5027.	2.4	68
61	Palladium-Catalyzed Diastereoselective Formal [5 + 3] Cycloaddition for the Construction of Spirooxindoles Fused with an Eight-Membered Ring. Organic Letters, 2019, 21, 4859-4863.	2.4	68
62	Lewis base effects in the Baylis–Hillman reaction of imines with cyclohex-2-en-1-one and cyclopent-2-en-1-one. Chemical Communications, 2001, , 1876-1877.	2.2	66
63	Lewis Base Effects in the Baylisâ´'Hillman Reaction of Arenecarbaldehydes and N-Arylidene-4-methylbenzenesulfonamides with $\hat{l}\pm,\hat{l}^2$ -Unsaturated Cyclic Ketones. European Journal of Organic Chemistry, 2002, 2002, 3666-3679.	1.2	66
64	Asymmetric Aza-MoritaBaylisHillman Reaction ofN-Sulfonated Imines with Methyl Vinyl Ketone Catalyzed by Chiral Phosphine Lewis Bases Bearing Perfluoroalkanes as "Pony Tails― Advanced Synthesis and Catalysis, 2005, 347, 1781-1789.	2.1	65
65	Manganese(III)-Mediated Oxidative Annulation of Methylenecyclopropanes with 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2005, 70, 3859-3863.	1.7	65
66	<i>Cinchona</i> Alkaloidâ€Derived Thioureaâ€Catalyzed Diastereo―and Enantioselective [3+2] Cycloaddition Reaction of Isocyanoacetates to Isatins: A Facile Access to Optically Active Spirooxindole Oxazolines. Advanced Synthesis and Catalysis, 2013, 355, 1277-1283.	2.1	64
67	Synthesis of Functionalized Chromans by P ^{<i>n</i>> sup>Bu₃-Catalyzed Reactions of Salicylaldimines and Salicylaldehydes with Allenic Ester. Organic Letters, 2010, 12, 5664-5667.}	2.4	63
68	Intramolecular annulation of aromatic rings with N-sulfonyl 1,2,3-triazoles: divergent synthesis of 3-methylene-2,3-dihydrobenzofurans and 3-methylene-2,3-dihydroindoles. Chemical Communications, 2015, 51, 133-136.	2.2	63
69	Polymer-Supported Lewis Bases for the Baylis–Hillman Reaction. Advanced Synthesis and Catalysis, 2003, 345, 953-958.	2.1	62
70	Nitrogen―and Phosphorus ontaining Lewis Base Catalyzed [4+2] and [3+2] Annulation Reactions of Isatins with Butâ€3â€ynâ€2â€one. European Journal of Organic Chemistry, 2012, 2012, 581-586.	1.2	62
71	Copperâ€Catalyzed Trifluoromethylation and Cyclization of Aromaticâ€Sulfonylâ€Groupâ€Tethered Alkenes for the Construction of 1,2â€Benzothiazinane Dioxide Type Compounds. Chemistry - A European Journal, 2013, 19, 16910-16915.	1.7	62
72	Recent Advances in the Construction of Trifluoromethylâ€Containing Spirooxindoles through Cycloaddition Reactions. Chemistry - an Asian Journal, 2020, 15, 1225-1233.	1.7	62

#	Article	IF	CITATIONS
73	The Lewis Acids Catalyzed Aza-Dielsâ-'Alder Reaction of Methylenecyclopropanes with Imines. Organic Letters, 2003, 5, 579-582.	2.4	61
74	NHC–Pd(II) complex–Cu(I) co-catalyzed homocoupling reaction of terminal alkynes. Applied Organometallic Chemistry, 2006, 20, 771-774.	1.7	61
75	Chiral Bifunctional Organocatalysts in Asymmetric Aza-Moritaâ^'Baylisâ^'Hillman Reactions of Ethyl (Arylimino)acetates with Methyl Vinyl Ketone and Ethyl Vinyl Ketone. Journal of Organic Chemistry, 2007, 72, 9779-9781.	1.7	61
76	Gold atalyzed Intramolecular Regio―and Enantioselective Cycloisomerization of 1,1â€Bis(indolyl)â€5â€alkynes. Angewandte Chemie - International Edition, 2013, 52, 6767-6771.	7.2	61
77	A Rh-catalyzed 1,2-sulfur migration/aza-Diels–Alder cascade initiated by aza-vinyl carbenoids from sulfur-tethered N-sulfonyl-1,2,3-triazoles. Chemical Communications, 2015, 51, 2122-2125.	2.2	61
78	Recent advances in annulation reactions based on zwitterionic π-allyl palladium and propargyl palladium complexes. Organic Chemistry Frontiers, 2021, 8, 3475-3501.	2.3	61
79	Chiral Bis(NHC)â^'Palladium(II) Complex Catalyzed and Diethylzinc-Mediated Enantioselective Umpolung Allylation of Aldehydes. Organometallics, 2009, 28, 2640-2642.	1.1	60
80	Chemoselective Reduction of Isatinâ€Derived Electronâ€Deficient Alkenes Using Alkylphosphanes as Reduction Reagents. European Journal of Organic Chemistry, 2011, 2011, 2668-2672.	1.2	60
81	Title is missing!. Angewandte Chemie, 2002, 114, 4689-4692.	1.6	59
82	Catalystâ€Dependent Divergent Synthesis of Pyrroles from 3â€Alkynyl Imine Derivatives: A Noncarbonylative and Carbonylative Approach. Angewandte Chemie - International Edition, 2014, 53, 8492-8497.	7.2	59
83	Dendritic Chiral Phosphine Lewis Basesâ€Catalyzed Asymmetric Azaâ€Morita–Baylis–Hillman Reaction of <i>N</i> â€Sulfonated Imines with Activated Olefins. Advanced Synthesis and Catalysis, 2008, 350, 122-128.	2.1	57
84	Cinchona Alkaloid Squaramide-Catalyzed Asymmetric Michael Addition of \hat{l} ±-Aryl Isocyanoacetates to \hat{l}^2 -Trifluoromethylated Enones and Its Applications in the Synthesis of Chiral \hat{l}^2 -Trifluoromethylated Pyrrolines. Journal of Organic Chemistry, 2015, 80, 11330-11338.	1.7	57
85	Aza-Baylisâ€"Hillman Reactions ofN-(Arylmethylene)diphenylphosphinamides with Activated Olefins in the Presence of Various Lewis Bases. Advanced Synthesis and Catalysis, 2004, 346, 1205-1219.	2.1	56
86	Synthesis of the Indene, THF, and Pyrrolidine Skeletons by Lewis Acid Mediated Cycloaddition of Methylenecyclopropanes with Aldehydes,N-Tosyl Aldimines, and Acetals. Chemistry - A European Journal, 2006, 12, 510-517.	1.7	56
87	Lewis Acid or Brønsted Acid Catalyzed Reactions of Vinylidene Cyclopropanes with Activated Carbon–Nitrogen, Nitrogen–Nitrogen, and Iodine–Nitrogen Doubleâ€Bondâ€Containing Compounds. Chemistry - A European Journal, 2009, 15, 963-971.	1.7	56
88	Asymmetric [3 + 2] annulation of N-protected isatins with but-3-yn-2-one catalyzed by DIOP: facile creation of enantioenriched spiro[furan-2,3â \in 2-indoline]-2â \in 2,4(5H)-dione. Organic and Biomolecular Chemistry, 2012, 10, 8048.	1.5	55
89	Phosphineâ€Catalyzed Asymmetric [4+2] Annulation of Vinyl Ketones with Oxindoleâ€Derived α,βâ€Unsa Imines: Enantioselective Syntheses of 2′,3′â€Dihydroâ€1′ <i>H</i> â€spiro[indolineâ€3,4′â€pyridin]â Synthesis and Catalysis, 2013, 355, 3351-3357.		. Advanced
90	Cyclopropene Derivatives as Precursors to Enantioenriched Cyclopropanols and <i>n</i> êButenals Possessing Quaternary Carbon Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 12345-12348.	7.2	55

#	Article	IF	CITATIONS
91	Recent Developments in Cyclopropane Cycloaddition Reactions. Trends in Chemistry, 2019, 1, 779-793.	4.4	55
92	Traditional Morita–Baylis–Hillman reaction of aldehydes with methyl vinyl ketone co-catalyzed by triphenylphosphine and nitrophenol. Organic and Biomolecular Chemistry, 2006, 4, 1468.	1.5	54
93	Gold(I)-Catalyzed Tandem Câ^'H and Câ^'C Activation (Cleavage). Organic Letters, 2010, 12, 116-119.	2.4	54
94	Switchable Ethylene Tri-/Tetramerization with High Activity: Subtle Effect Presented by Backbone-Substituent of Carbon-Bridged Diphosphine Ligands. ACS Catalysis, 2013, 3, 2311-2317.	5.5	54
95	Enantioselective Construction of Spirooxindole Derivatives: Asymmetric [3+2] Cyclization of Isothiocyanatooxindoles with Allenic Esters or 2â€Butynedioic Acid Diesters. Advanced Synthesis and Catalysis, 2013, 355, 2249-2256.	2.1	54
96	Catalytic Asymmetric Synthesis of 2â€Alkyleneoxetanes through [2+2] Annulation of Allenoates with Trifluoromethyl Ketones. Advanced Synthesis and Catalysis, 2012, 354, 1926-1932.	2.1	53
97	Goldâ€Catalyzed Cyclization of 1â€(Indolâ€3â€yl)â€3â€alkynâ€1â€ols: Facile Synthesis of Diversified Carbazoles. Chemistry - A European Journal, 2013, 19, 10625-10631.	1.7	52
98	Ring-Opening Reactions of Methylenecyclopropanes Promoted by Metal Halides. Organic Letters, 2003, 5, 1415-1418.	2.4	51
99	Phosphine-Mediated [3+2] Cycloaddition Reactions of Ethyl 5,5-Diarylpenta-2,3,4-trienoates with Arylmethylidenemalononitriles and $\langle i \rangle N \langle j \rangle$ -Tosylimines. Journal of Organic Chemistry, 2009, 74, 1977-1981.	1.7	51
100	The GAP chemistry for chiral N-phosphonyl imine-based Strecker reaction. Green Chemistry, 2011, 13, 1288.	4.6	51
101	Preparation of Chiral Multifunctional Thiourea–Phosphanes and Synthesis of Chiral Allylic Phosphites and Phosphane Oxides through Asymmetric Allylic Substitution Reactions of Morita–Baylis–Hillman Carbonates. European Journal of Organic Chemistry, 2012, 2012, 183-187.	1.2	50
102	Copper-catalyzed regio- and enantioselective aminoboration of alkylidenecyclopropanes: the synthesis of cyclopropane-containing \hat{l}^2 -aminoalkylboranes. Chemical Communications, 2016, 52, 5273-5276.	2.2	50
103	PPh $<$ sub $>3<$ /sub $>$ -Catalyzed [3 + 2] Spiroannulation of $1<$ i $>C<$ /i $>$,3 $<$ i $>N<$ /i $>$ -Bisnucleophiles Derived from Secondary \hat{l}^2 -Ketoamides with \hat{l} -Acetoxy Allenoate: A Route to Functionalized Spiro $<$ i $>N<$ /i $>$ -Heterocyclic Derivatives. Organic Letters, 2017, 19, 2382-2385.	2.4	50
104	Rhodium(I)-Catalyzed Intramolecular Ene Reaction of Vinylidenecyclopropanes and Alkenes for the Formation of Bicyclo[5.1.0]octylenes. Organic Letters, 2010, 12, 64-67.	2.4	49
105	Thermally induced [3+2] cyclization of aniline-tethered alkylidenecyclopropanes: a facile synthetic protocol of pyrrolo[1,2-a]indoles. Chemical Communications, 2012, 48, 7696.	2.2	49
106	Cinchona Alkaloid Squaramide Catalyzed Enantioselective Hydrazination/Cyclization Cascade Reaction of α-Isocyanoacetates and Azodicarboxylates: Synthesis of Optically Active 1,2,4-Triazolines. Journal of Organic Chemistry, 2013, 78, 9377-9382.	1.7	49
107	Rh(<scp>ii</scp>)-Catalyzed formation of pyrrolo[2,3-b]quinolines from azide-methylenecyclopropanes and isonitriles. Chemical Communications, 2016, 52, 1967-1970.	2.2	49
108	Thermally induced formal [3+2] cyclization of ortho-aminoaryl-tethered alkylidenecyclopropanes: facile synthesis of furoquinoline and thienoquinoline derivatives. Chemical Communications, 2016, 52, 2701-2704.	2.2	49

#	Article	IF	CITATIONS
109	Titanium(IV) chloride, zirconium(IV) chloride or boron trichloride and phosphine-promoted Baylisâ \in Hillman reaction of aldehydes with $\hat{l}\pm\hat{l}^2$ -unsaturated ketone. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 390-393.	1.3	48
110	New discovery in the traditional Baylis-Hillman reaction of arylaldehydes with methyl vinyl ketone. Chemical Communications, 2001, , 833-834.	2.2	47
111	Asymmetric Formal [3+2] Cycloaddition Reaction of αâ€Aryl Isocyanoesters with <i>N</i> â€Aryl Maleimides by Bifunctional Cinchona Alkaloidsâ€Based Squaramide/AgSbF ₆ Cooperative Catalysis. Chemistry - an Asian Journal, 2012, 7, 2777-2781.	1.7	47
112	An Unexpected Highly Stereoselective Double Aza-Baylisâ^'Hillman Reaction of Sulfonated Imines with Phenyl Vinyl Ketone. Journal of Organic Chemistry, 2003, 68, 4784-4790.	1.7	46
113	Chiral Sterically Congested Phosphaneâ€Amide Bifunctional Organocatalysts in Asymmetric Azaâ€Morita–Baylis–Hillman Reactions of <i>N</i> à€Sulfonated Imines with Methyl and Ethyl Vinyl Ketones. European Journal of Organic Chemistry, 2008, 2008, 2150-2155.	1.2	46
114	Axially Chiral Phosphineâ€Oxazoline Ligands in Silver(I)―Catalyzed Asymmetric Mannich Reaction of Aldimines with Trimethylsiloxyfuran. Advanced Synthesis and Catalysis, 2009, 351, 2897-2902.	2.1	46
115	Cinchona Alkaloid Catalyzed Enantioselective Chlorination of 3â€Aryloxindoles. European Journal of Organic Chemistry, 2011, 2011, 3001-3008.	1.2	46
116	Highly Enantioselective Michael Addition of 3â€Aryloxindoles to Phenyl Vinyl Sulfone Catalyzed by Cinchona Alkaloidâ€Derived Bifunctional Amine–Thiourea Catalysts Bearing Sulfonamide as Multiple Hydrogenâ€Bonding Donors. European Journal of Organic Chemistry, 2011, 2011, 6078-6084.	1.2	46
117	Divergent synthesis of indole-fused polycycles via Rh(<scp>ii</scp>)-catalyzed intramolecular [3 + 2] cycloaddition and Câ€"H functionalization of indolyltriazoles. Organic Chemistry Frontiers, 2015, 2, 1516-1520.	2.3	46
118	Copper-catalyzed cascade cyclization of 1,5-enynes via consecutive trifluoromethylazidation/diazidation and click reaction: self-assembly of triazole fused isoindolines. Chemical Communications, 2016, 52, $13163-13166$.	2.2	46
119	A facile approach for the trifluoromethylthiolation of methylenecyclopropanes. Organic Chemistry Frontiers, 2017, 4, 86-90.	2.3	46
120	Br \tilde{A}_{j} nsted Acid TfOH-Mediated [3 + 2] Cycloaddition Reactions of Diarylvinylidenecyclopropanes with Nitriles. Journal of Organic Chemistry, 2008, 73, 4151-4154.	1.7	45
121	Phosphineâ€Catalyzed Asymmetric Formal [4+2] Tandem Cyclization of Activated Dienes with Isatylidenemalononitriles: Enantioselective Synthesis of Multistereogenic Spirocyclic Oxindoles. Advanced Synthesis and Catalysis, 2014, 356, 736-742.	2.1	45
122	Rhodium/Silver Synergistic Catalysis in Highly Enantioselective Cycloisomerization/Cross Coupling of Keto-Vinylidenecyclopropanes with Terminal Alkynes. Journal of the American Chemical Society, 2017, 139, 5957-5964.	6.6	45
123	Palladium-Catalyzed Isomerization of Methylenecyclopropanes in Acetic Acid. Journal of Organic Chemistry, 2005, 70, 5606-5610.	1.7	44
124	Transamidation Catalyzed by a Recoverable and Reusable PolyDMAPâ€Based Hafnium Chloride and Montmorillonite KSF. Synthetic Communications, 2005, 35, 2847-2858.	1.1	44
125	Gold(I)â€Catalyzed Cycloisomerization of Nitrogen―and Oxygenâ€Tethered Alkylidenecyclopropanes to Tricyclic Compounds. Chemistry - A European Journal, 2012, 18, 7026-7029.	1.7	44
126	Divergent reaction pathways in gold-catalyzed cycloisomerization of 1,5-enynes containing a cyclopropane ring: dramatic ortho substituent and temperature effects. Chemical Science, 2016, 7, 4318-4328.	3.7	44

#	Article	IF	Citations
127	Substrate-controlled Rh(<scp>ii</scp>)-catalyzed single-electron-transfer (SET): divergent synthesis of fused indoles. Chemical Communications, 2016, 52, 350-353.	2.2	44
128	Synthesis and structures of gold and copper carbene intermediates in catalytic amination of alkynes. Nature Communications, 2017, 8, 14625.	5.8	44
129	Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chemical Communications, 2002, , 994-995.	2.2	43
130	Montmorillonite KSF-Catalyzed One-Pot, Three-Component, Aza-Diels–Alder Reactions of Methylenecyclopropanes with Arenecarbaldehydes and Arylamines. Advanced Synthesis and Catalysis, 2003, 345, 963-966.	2.1	42
131	Aza-Baylis–Hillman Reaction ofβ-Substituted Activated Olefins withN-Tosyl Imines. Advanced Synthesis and Catalysis, 2004, 346, 1220-1230.	2.1	42
132	An Efficient Method for the Synthesis of Alkylidenecyclobutanones by Goldâ€Catalyzed Oxidative Ring Enlargement of Vinylidenecyclopropanes. Chemistry - A European Journal, 2012, 18, 10501-10505.	1.7	42
133	Recent Advances in Transition-Metal-Catalyzed/Mediated Transformations of Vinylidenecyclopropanes. Accounts of Chemical Research, 2018, 51, 1667-1680.	7.6	42
134	Potassium Carbonate-Catalyzed Reactions of Salicylic Aldehydes with Allenic Ketones and Esters: an Effective Way to Synthesize Functionalized 2H-Chromenes. Advanced Synthesis and Catalysis, 2006, 348, 967-972.	2.1	41
135	Synthesis of Functionalized Polycyclic Compounds: Rhodium(I)â€Catalyzed Intramolecular Cycloaddition of Yne and Ene Vinylidenecyclopropanes. Angewandte Chemie - International Edition, 2011, 50, 12027-12031.	7.2	41
136	Cinchona alkaloid thiourea mediated asymmetric Mannich reaction of isocyanoacetates with isatin-derived ketimines and subsequent cyclization: enantioselective synthesis of spirooxindole imidazolines. RSC Advances, 2015, 5, 75648-75652.	1.7	41
137	Palladium-catalyzed cascade cyclization of allylamine-tethered alkylidenecyclopropanes: facile access to iodine/difluoromethylene- and perfluoroalkyl-containing 1-benzazepine scaffolds. Chemical Communications, 2016, 52, 6581-6584.	2.2	41
138	Pd(II)- and Pd(0)-Cocatalyzed Reactions of Sulfonamides with MCPs. Organic Letters, 2003, 5, 1225-1228.	2.4	40
139	Reactions of Methylenecyclopropanes with Phenylsulfenyl Chloride and Phenylselenyl Chloride. Journal of Organic Chemistry, 2004, 69, 2805-2808.	1.7	40
140	Unprecedented synthesis of aza-bridged benzodioxepine derivatives through a tandem Rh(<scp>ii</scp>)-catalyzed 1,3-rearrangement/[3+2] cycloaddition of carbonyltriazoles. Chemical Communications, 2014, 50, 15971-15974.	2.2	40
141	Enantioselective Synthesis of Polycyclic Indole Derivatives Based on aza-Morita–Baylis–Hillman Reaction. ACS Catalysis, 2015, 5, 6608-6614.	5 . 5	40
142	The Catalytic Asymmetric Addition of Diethylzinc toN-(Diphenylphosphinoyl) Imines Catalyzed by Cu(OTf)2-ChiralN-(Binaphthyl-2-yl)thiophosphoramide Ligands. Advanced Synthesis and Catalysis, 2003, 345, 971-973.	2.1	39
143	Lewis acid-catalyzed novel [3+2] cycloaddition of methylenecyclopropanes with activated aldehydes or ketones. Tetrahedron Letters, 2003, 44, 3839-3842.	0.7	39
144	Ruthenium-Catalyzed Tandem Ring-Opening/Ring-Closing/Cross-Metathesis of 1,6-Cyclopropene-ynes and Olefins for the Construction of the 3-Pyrroline Skeleton. Organic Letters, 2010, 12, 4462-4465.	2.4	39

#	Article	IF	Citations
145	Visibleâ€Lightâ€Induced Trifluoromethylation of Isonitrileâ€Substituted Methylenecyclopropanes: Facile Access to 6â€(Trifluoromethyl)â€7,8â€Dihydrobenzo[<i>k</i>)phenanthridine Derivatives. Chemistry - A European Journal, 2016, 22, 13059-13063.	1.7	39
146	Copper-catalyzed trifluoromethylazidation and rearrangement of aniline-linked 1,7-enynes: access to CF ₃ -substituted azaspirocyclic dihydroquinolin-2-ones and furoindolines. Chemical Communications, 2017, 53, 8980-8983.	2.2	39
147	Activation Relay on Rhodium-Catalyzed C–H Aminomethylation in Cooperation with Photoredox Catalysis. Organic Letters, 2019, 21, 4077-4081.	2.4	39
148	Phosphineâ€Catalyzed Annulations of 4,4â€Dicyanoâ€2â€Methylenebutâ€3â€enoates with Maleimides and Malei Anhydride. Angewandte Chemie - International Edition, 2014, 53, 10768-10773.	^{iC} 7.2	38
149	Synthesis of Polysubstituted Polycyclic Aromatic Hydrocarbons by Gold-Catalyzed Cyclization–Oxidation of Alkylidenecyclopropane-Containing 1,5-Enynes. ACS Catalysis, 2017, 7, 4242-4247.	5.5	38
150	The Construction of Molecular Complexity from Functionalized Alkylidenecyclopropanes (FACPs). Chemistry - A European Journal, 2019, 25, 7591-7606.	1.7	38
151	Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium. Organic and Biomolecular Chemistry, 2007, 5, 438-440.	1.5	37
152	Au/Ag-Catalyzed Intramolecular Ring-Opening of Vinylidene-cyclopropanes (VDCPs): An Easy Access to Functional Tetrahydropyrans. Organic Letters, 2010, 12, 920-923.	2.4	37
153	Yb(OTf) ₃ ―or Au ^I atalyzed Domino Intramolecular Hydroamination and Ringâ€Opening of Sulfonamideâ€Substituted 1,1â€Vinylidenecyclopropanediesters. Chemistry - A European Journal, 2011, 17, 13160-13165.	1.7	37
154	A Highly Nucleophilic Multifunctional Chiral Phosphane atalyzed Asymmetric Intramolecular Rauhut–Currier Reaction. European Journal of Organic Chemistry, 2012, 2012, 6271-6279.	1.2	37
155	Zinc(II)â€Catalyzed Mannichâ€type Reactions of Hydrazones with Difluoroenoxysilane and Its Application in the Synthesis of Optically Active 2,2â€Difluoroâ€3â€oxoâ€benzohydrazide. Chinese Journal of Chemistry, 2010, 28, 1709-1716.	2.6	36
156	Axially chiral N-heterocyclic carbene gold(I) complex catalyzed asymmetric Friedel–Crafts/cyclization reaction of nitrogen-tethered 1,6-enynes with indole derivatives. Tetrahedron: Asymmetry, 2011, 22, 2029-2038.	1.8	36
157	Diastereo―and Enantioselective Construction of γâ€Butenolides through Chiral Phosphaneâ€Catalyzed Allylic Alkylation of Morita–Baylis–Hillman Acetates. European Journal of Organic Chemistry, 2011, 2011, 5146-5155.	1.2	36
158	Oneâ€Pot Tandem Diastereoselective and Enantioselective Synthesis of Functionalized Oxindoleâ€Fused Spiropyrazolidine Frameworks. Chemistry - A European Journal, 2014, 20, 13136-13142.	1.7	36
159	Gold(<scp>i</scp>)-catalyzed cycloisomerization of vinylidenecyclopropane-enes <i>via</i> carbene or non-carbene processes. Chemical Science, 2015, 6, 5519-5525.	3.7	36
160	Asymmetric 1,4-Addition of Diethylzinc to Cyclic Enones Catalyzed by Cu(I)-Chiral Sulfonamide-Thiophosphoramide Ligands and Lithium Salts. Advanced Synthesis and Catalysis, 2005, 347, 535-540.	2.1	35
161	Tertiary Amineâ€Catalyzed Difluoromethylthiolation of Morita–Baylis–Hillman Carbonates of Isatins with Zard's Trifluoromethylthiolation Reagent. Advanced Synthesis and Catalysis, 2017, 359, 49-57.	2.1	35
162	Ring-Expansion of MCPs in the Presence of DIAD or DEAD and Lewis Acids. European Journal of Organic Chemistry, 2004, 2004, 426-430.	1.2	34

#	Article	IF	CITATIONS
163	A Fast Catalytic Asymmetric Azaâ€Morita–Baylis–Hillman Reaction of ⟨i>N⟨/i>â€Sulfonated Imines with Methyl Vinyl Ketone in the Presence of Chiral Bifunctional Phosphane Lewis Bases. European Journal of Organic Chemistry, 2008, 2008, 3817-3820.	1.2	34
164	Brønsted Acid or Solid Acid Catalyzed Azaâ€Diels–Alder Reactions of Methylenecyclopropanes with Ethyl (Arylimino)acetates. European Journal of Organic Chemistry, 2009, 2009, 2576-2580.	1.2	34
165	Phosphaneâ€Catalyzed Umpolung Addition Reaction of Nucleophiles to Ethyl 2â€Methylâ€⊋,3â€butadienoate. European Journal of Organic Chemistry, 2011, 2011, 2673-2677.	1.2	34
166	Gold―and Silverâ€Catalyzed Intramolecular Cyclizations of Indolylcyclopropenes for the Divergent Synthesis of Azepinoindoles and Spiroindoline Piperidines. ChemCatChem, 2015, 7, 595-600.	1.8	34
167	Cyclization of sulfide, ether or tertiary amine-tethered N-sulfonyl-1,2,3-triazoles: a facile synthetic protocol for 3-substituted isoquinolines or dihydroisoquinolines. Chemical Communications, 2015, 51, 16968-16971.	2.2	34
168	Recent Advances in the Cycloisomerizations of Methylenecyclopropanes using Gold Catalysis. Chemistry - A European Journal, 2018, 24, 9998-10005.	1.7	34
169	VO(acac)2-Catalyzed Oxidative Coupling Reactions of Phosphonium Salts. Journal of Organic Chemistry, 2002, 67, 294-297.	1.7	33
170	The reactions of thiols and diphenyldisulfide with terminally substituted methylenecyclopropanes. Tetrahedron Letters, 2002, 43, 2781-2784.	0.7	33
171	Lewis Acid Catalyzed Cascade Reactions of Diarylvinylidenecyclopropanes and 1,1,3â€Triarylpropâ€2â€ynâ€1â€ol: or Their Methyl Ethers. Chemistry - A European Journal, 2008, 14, 8725-8731.	S _{1.7}	33
172	Thermal induced intramolecular $[2+2]$ cycloaddition of allene-ACPs. Organic and Biomolecular Chemistry, 2013, 11, 3949.	1.5	33
173	Enantioselective [3+2] Cyclization of 3â€Isothiocyanato Oxindoles with Trifluoromethylated 2â€Butenedioic Acid Diesters. ChemCatChem, 2015, 7, 1366-1371.	1.8	33
174	Construction of Spirocyclic Oxindoles through Regio―and Stereoselective [3+2] or [3+2]/[4+2] Cascade Reaction of α,βâ€Unsaturated Imines with 3â€Isothiocyanato Oxindole. Chemistry - A European Journal, 2016, 22, 4733-4737.	1.7	33
175	Lewis Acid Catalyzed Reactions of Vinylidenecyclopropanes with Activated Carbonâ^Oxygen Double Bond:  A Facile Synthetic Protocol for Functionalized Tetrahydrofuran and 3,6-Dihydropyran Derivatives. Journal of Organic Chemistry, 2008, 73, 2206-2210.	1.7	32
176	Gold(I)-Catalyzed Intramolecular Rearrangement of Vinylidenecyclopropanes. Journal of Organic Chemistry, 2008, 73, 8344-8347.	1.7	32
177	Palladium(II) Acetate Catalyzed Tandem Cycloisomerization and Oxidation of Arylvinylcyclopropenes Using <i>p</i> -Benzoquinone as Oxidant and Pro-nucleophile. Organic Letters, 2009, 11, 5278-5281.	2.4	32
178	Ringâ€Opening Reaction of Vinylidenecyclopropanediesters Catalyzed by Re ₂ (CO) ₁₀ or Yb(OTf) ₃ . European Journal of Organic Chemistry, 2011, 2011, 1099-1105.	1.2	32
179	Rhodium(I)â€Catalyzed Cycloisomerization of Nitrogenâ€Tethered Indoles and Alkylidenecyclopropanes: Convenient Access to Polycyclic Indole Derivatives. Chemistry - A European Journal, 2013, 19, 13668-13673.	1.7	32
180	Highly Efficient Construction of Trifluoromethylated Heterocycles; [3+2] Annulation of N,N′ yclic or C,N yclic Azomethine Imines with Trifluoromethyl ontaining Electronâ€Deficient Olefins. European Journal of Organic Chemistry, 2013, 2013, 401-406.	1.2	32

#	Article	IF	Citations
181	Synthesis of indolizine derivatives containing eight-membered rings <i>via</i> a gold-catalyzed two-fold hydroarylation of diynes. Chemical Communications, 2018, 54, 1225-1228.	2.2	32
182	Reactions ofgem-Aryl-Disubstituted Methylenecyclopropanes with Diaryl Diselenide in the Presence of Iodosobenzene Diacetate. European Journal of Organic Chemistry, 2005, 2005, 759-765.	1.2	31
183	Highly Diastereo―and Enantioselective Vinylogous Mannich Reactions of Fluorinated Aldimines with Siloxyfurans. Advanced Synthesis and Catalysis, 2011, 353, 637-643.	2.1	31
184	Silverâ€Catalyzed Amidiniumation of Alkynes: Isolation of a Silver Intermediate, Synthesis of Enamine Amido Carbene Precursors, and an Unprecedented Umpolung of Propiolamide. Angewandte Chemie - International Edition, 2015, 54, 14941-14946.	7.2	31
185	Ring-opening reactions of methylenecyclopropanes with diphenyl diselenide upon heating; formation of 3-phenylselenyl-2,5-dihydrofuran derivatives. Chemical Communications, 2004, , 2878.	2.2	30
186	A Catalytic Method for the Preparation of Polysubstituted Cyclopentanes: [3+2] Cycloaddition of Vinylidenecyclopropanes with Activated Olefins Catalyzed by Triflic Imide. Journal of Organic Chemistry, 2009, 74, 856-860.	1.7	30
187	Enantioselective Synthesis of Spirooxindoles: Asymmetric [3+2] Cycloaddition of (3â€isothiocyanato)oxindoles with Azodicarboxylates. European Journal of Organic Chemistry, 2013, 2013, 7895-7901.	1.2	30
188	The highly enantioselective catalytic aza-Morita–Baylis–Hillman reaction. Organic Chemistry Frontiers, 2014, 1, 587-595.	2.3	30
189	Rhodium(III)â€Catalyzed Controllable Câ^'H Bond Functionalization of Benzamides and Vinylidenecyclopropanes: A Directing Group Determined Reaction Pathway. Advanced Synthesis and Catalysis, 2017, 359, 974-983.	2.1	30
190	Palladium-catalyzed oxidative cyclization of aniline-tethered alkylidenecyclopropanes with O ₂ : a facile protocol to selectively synthesize 2- and 3-vinylindoles. Chemical Communications, 2017, 53, 216-219.	2.2	30
191	Phosphineâ€Catalyzed [3+2] Annulation of <i>N</i> â€2,2,2â€Trifluoroethylisatin Ketimines with γâ€Substituted Allenoates: Synthesis of Spiro[indolineâ€3,2′â€pyrrole]. European Journal of Organic Chemistry, 2019, 2019, 1620-1626.	1.2	30
192	A Facile Route to Bulladecin-Type Acetogenins - Total Synthesis of Asimilobinand Correction of the Configuration of Its Tetrahydrofuran Segment. European Journal of Organic Chemistry, 2000, 2000, 349-356.	1.2	29
193	Reactions of Vinylidenecyclopropanes with Diphenyl Diselenide in the Presence of AIBN and Further Transformation To Produce New Naphthalene Derivatives. Journal of Organic Chemistry, 2006, 71, 1920-1923.	1.7	29
194	Gold(I) and BrÃ,nsted Acid Catalyzed Intramolecular Rearrangements of Vinylidenecyclopropanes. Chemistry - A European Journal, 2010, 16, 10975-10979.	1.7	29
195	Palladium(0)â€Catalyzed Reaction of Cyclopropylidenecycloalkanes with Carbon Dioxide. European Journal of Organic Chemistry, 2011, 2011, 7189-7193.	1.2	29
196	Rh(I)-catalyzed Pauson-Khand-type Cycloaddition Reaction of Ene-vinylidenecyclopropanes with Carbon Monoxide (CO). Organic Letters, 2012, 14, 5582-5585.	2.4	29
197	Asymmetric Synthesis of Bioxindoleâ€Substituted Hexahydrofuro[2,3â€ <i>b</i> i> furans <i>via</i> Hydroquinine Anthraquinoneâ€1,4â€diyl Dietherâ€Catalyzed Domino Annulation of Acylidenoxindoles/Isatins, Acylidenoxindoles and Allenoates. Advanced Synthesis and Catalysis, 2014, 356, 3799-3808.	2.1	29
198	Trifluoromethanesulfonamide, diphenylphosphoramide and diphenylthiophosphoramide of (R)-(+)-1,1?-binaphthyl-2,2?-diamine as chiral catalyst ligands for the titanium(IV) alkoxide-promoted addition of diethylzinc to aldehydes. Chirality, 2000, 12, 574-580.	1.3	28

#	Article	IF	CITATIONS
199	Oxidation of Benzyl Chlorides and Bromides to Benzoic Acids with 30 Hydrogen Peroxide in the Presence of Na2WO4, Na2VO4, or Na2MoO4under Organic Solvent-Free Conditions. Journal of Organic Chemistry, 2001, 66, 3235-3237.	1.7	28
200	PhI(OAc)2-mediated additions of 2,4-dinitrophenylsulfenamide with methylenecyclopropanes (MCPs) and a methylenecyclobutane (MCB). Tetrahedron, 2007, 63, 11016-11020.	1.0	28
201	Preparation of novel axially chiral NHC–Pd(II) complexes and their application in oxidative kinetic resolution of secondary alcohols. Applied Organometallic Chemistry, 2009, 23, 183-190.	1.7	28
202	Novel Quinidineâ€Derived Organocatalysts for the Asymmetric Substitutions of <i>O</i> ê€Bocâ€Protected Morita–Baylis–Hillman Adducts. European Journal of Organic Chemistry, 2011, 2011, 4479-4484.	1.2	28
203	Chiral squaramides catalyzed diastereo- and enantioselective Michael addition of α-substituted isocyanoacetates to N-aryl maleimides. Tetrahedron, 2013, 69, 10763-10771.	1.0	28
204	A Highly Regio- and Diastereoselective Four-Component Reaction to Construct Polycyclic Bispiroindolines from 2-Isocyanoethylindoles and Isocyanates. Organic Letters, 2018, 20, 7076-7079.	2.4	28
205	Axially dissymmetric (R)-(+)-5,5?,6,6?,7,7?,8,8? octahydro-[1,1?]binaphthyldiimine chiral salen type-ligands for copper-catalyzed asymmetric aziridination. Chirality, 2002, 14, 412-416.	1.3	27
206	Asymmetric catalysis of Morita-Baylis-Hillman reactions by chiral phosphine Lewis bases bearing multiple phenol groups. Chirality, 2007, 19, 124-128.	1.3	26
207	Asymmetric catalytic aza-Morita–Baylis–Hillman reaction (aza-MBH): an interesting functional group-caused reversal of asymmetric induction. Chemical Communications, 2008, , 6025.	2.2	26
208	Gold(I)â€Catalyzed Domino Reaction of Aziridinyl Alkynes. Chemistry - A European Journal, 2010, 16, 7725-7729.	1.7	26
209	Gold(I)â€Catalyzed Tandem Oxidative Ringâ€Opening/CC Bond Cleavage Reactions of Vinylidenecyclopropanes with Secondary Amines Under an Oxygen Atmosphere. Chemistry - A European Journal, 2011, 17, 9070-9075.	1.7	26
210	Cinchona Alkaloid Catalyzed Regio―and Enantioselective Allylic Amination of Morita–Baylis–Hillman Carbonates with Isatins. European Journal of Organic Chemistry, 2012, 2012, 3598-3606.	1.2	26
211	Lewis base-catalyzed reactions of cyclopropenones: novel synthesis of mono- or multi-substituted allenic esters. Chemical Communications, 2014, 50, 115-117.	2.2	26
212	Synthesis of 5,6â€Dihydropyrazolo[5,1â€ <i>a</i>]isoquinoline and Ethyl (<i>Z</i>)â€3â€Acetoxyâ€3â€tosylpentâ€4â€enoate through Tertiaryâ€Amineâ€Catalyzed [3+2] Annulation. Eur Journal of Organic Chemistry, 2016, 2016, 3486-3490.	op e an	26
213	Phosphineâ€Mediated Dimerization of Conjugated Eneâ€Yne Ketones: Stereoselective Construction of Dihydrobenzofurans. Advanced Synthesis and Catalysis, 2017, 359, 1263-1270.	2.1	26
214	Enantioselective Synthesis of Isatinâ€Derived αâ€(Trifluoromethyl)imine Derivatives: Phosphineâ€Catalyzed γâ€Addition of αâ€(Trifluoromethyl)imines and Allenoates. European Journal of Organic Chemistry, 2017, 2017, 1552-1560.	1.2	26
215	Highly Efficient and Diastereoselective Construction of Trifluoromethyl-Containing Spiro[pyrrolidin-3,2 \hat{a} e²-oxindole] by a Catalyst-free Mutually Activated [3+2] Cycloaddition Reaction. Chemistry - A European Journal, 2018, 24, 10038-10043.	1.7	26
216	Gold(<scp>i</scp>)-catalyzed cascade cyclization of <i>O</i> -tethered 1,7-enynes bearing a cyclopropane moiety: construction of multi-substituted furans. Chemical Communications, 2019, 55, 8126-8129.	2.2	26

#	Article	IF	Citations
217	Organocatalyzed asymmetric formal $[3 + 2]$ cycloaddition of isocyanoacetates with (i) N(i)-itaconimides: facile access to optically active spiropyrroline succinimide derivatives. Organic Chemistry Frontiers, 2019, 6, 3879-3884.	2.3	26
218	Ring-opening reaction of methylenecyclopropanes with LiCl, LiBr or NaI in acetic acid. Tetrahedron, 2004, 60, 2057-2062.	1.0	25
219	Silica Gel Triggered Transformations of 3-Methylenecyclopropylmethyl Sulfonates to 3-Methylenecyclobutyl Analogues: Experimental and Computational Studies. Chemistry - A European Journal, 2007, 13, 862-869.	1.7	25
220	Reactions of methylenecyclopropanes and vinylidenecyclopropanes with N-fluorodibenzenesulfonimide. Tetrahedron, 2009, 65, 5222-5227.	1.0	25
221	Phosphorusâ€Containing Lewis Base Catalyzed Cascade Reactions of Isatinâ€Derived Oximes with Allenic Esters and Further Transformations. European Journal of Organic Chemistry, 2012, 2012, 4206-4216.	1.2	25
222	Axially Chiral <i>C</i> ₂ â€Symmetric <i>N</i> à€Heterocyclic Carbene (NHC) Palladium Complexâ€Catalyzed Asymmetric Fluorination and Amination of Oxindoles. Chinese Journal of Chemistry, 2012, 30, 1295-1304.	2.6	25
223	Gold atalyzed Cycloisomerization of Yneâ€Vinylidenecyclopropanes: A Three arbon Synthon for [3+2] Cycloadditions. Chemistry - A European Journal, 2014, 20, 3198-3204.	1.7	25
224	Solvent-controlled nucleophilic trifluoromethylthiolation of Morita–Baylis–Hillman carbonates: dual roles of DABCO in activating the Zard's trifluoromethylthiolation reagent and the MBH carbonates. Organic Chemistry Frontiers, 2015, 2, 1088-1093.	2.3	25
225	Palladium-catalyzed asymmetric [3+2] cycloaddition to construct 1,3-indandione and oxindole-fused spiropyrazolidine scaffolds. RSC Advances, 2015, 5, 92545-92548.	1.7	25
226	Unprecedented Oxycyanation of Methylenecyclopropanes for the Facile Synthesis of Benzoxazine Compounds Containing a Cyano Group. Chemistry - A European Journal, 2016, 22, 5146-5150.	1.7	25
227	Base-induced synthesis of N-dialkylaminomethyl-2H-1,2,3-triazoles from N-sulfonyl-1,2,3-triazoles. Organic Chemistry Frontiers, 2016, 3, 744-748.	2.3	25
228	Cascade Amination/Cyclization/Aromatization Process for the Rapid Construction of [2,3- <i>c</i>]Dihydrocarbazoles and [2,3- <i>c</i>]Carbazoles. Organic Letters, 2017, 19, 4476-4479.	2.4	25
229	Highly Enantioselective Allylation of Arylaldehydes Catalyzed by a Silver(I)-Chiral Binaphthylthiophosphoramide. European Journal of Organic Chemistry, 2003, 2003, 2823-2828.	1.2	24
230	Highly Efficient Catalytic Nitration of Phenolic Compounds by Nitric Acid with a Recoverable and Reusable Zr or Hf Oxychloride Complex and KSF. European Journal of Organic Chemistry, 2005, 2005, 2379-2384.	1.2	24
231	A stable dimeric mono-coordinated NHC-Pd(II) complex: synthesis, characterization, and reactivity in Suzuki-Miyaura cross-coupling reaction. Applied Organometallic Chemistry, 2005, 19, 1083-1089.	1.7	24
232	Asymmetric Azaâ€Morita–Baylis–Hillman Reactions of Alkyl Vinyl Ketones with <i>N</i> â€Protected Imines or In Situ Generated <i>N</i> â€Protected Imines. European Journal of Organic Chemistry, 2010, 2010, 4098-4105.	1.2	24
233	Titanium(IV) chloride-mediated intramolecular ring enlargement of methylenecyclopropanes with propargylic esters: a concise synthesis of bicyclo[4.2.0]oct-5-ene derivatives. Tetrahedron Letters, 2011, 52, 6541-6544.	0.7	24
234	Rh(II)-Catalyzed Chemoselective Oxidative Amination and Cyclization Cascade of	2.4	24

#	Article	IF	CITATIONS
235	An atmosphere and light tuned highly diastereoselective synthesis of cyclobuta/penta[<i>b</i>]indoles from aniline-tethered alkylidenecyclopropanes with alkynes. Chemical Communications, 2018, 54, 2870-2873.	2.2	24
236	Asymmetric synthesis of dihydrocoumarins $\langle i \rangle via \langle i \rangle$ catalytic sequential 1,6-addition/transesterification of $\hat{l}\pm isocyanoacetates$ with $\langle i \rangle para \langle i \rangle -quinone$ methides. Organic and Biomolecular Chemistry, 2020, 18, 1637-1646.	1.5	24
237	Electrophilic Aromatic Nitration Using a Mixed Catalyst of Lithium, Molybdenum, Ytterbium on Silica Gel. Advanced Synthesis and Catalysis, 2003, 345, 1329-1333.	2.1	23
238	Azaâ€Michael Addition Reactions of Hydrazones with Activated Alkynes Catalyzed by Nitrogen ontaining Organic Bases. European Journal of Organic Chemistry, 2010, 2010, 4088-4097.	1.2	23
239	Titanium(IV) Chlorideâ€Mediated Carbocyclization of 1,6â€Enynes: Selective Synthesis of 3â€Azabicyclo[3.1.0]hexanes and Functionalized Allenes by Controlling the Reaction Temperature. European Journal of Organic Chemistry, 2011, 2011, 2610-2614.	1.2	23
240	Rhodium(I)-Catalyzed Pauson–Khand-type [3 + 2 + 1] Cycloaddition Reaction of Ene-Vinylidenecyclopropanes and CO: A Highly Regio- and Stereoselective Synthetic Approach for the Preparation of Aza- and Oxa-Bicyclic Compounds. Organometallics, 2012, 31, 4601-4609.	1.1	23
241	Gold(<scp>i</scp>)-catalyzed intramolecular hydroarylation and the subsequent ring enlargement of methylenecyclopropanes to cyclobutenes. RSC Advances, 2016, 6, 40474-40479.	1.7	23
242	Synthesis of Cyclic and Heterocyclic Compounds via Gold-Catalyzed Reactions. Synlett, 2017, 28, 2230-2240.	1.0	23
243	Palladium-catalyzed intramolecular transfer hydrogenation & to synthesize perhydroindole scaffolds. of <i>p</i> -quinamine-tethered alkylidenecyclopropanes to synthesize perhydroindole scaffolds. Chemical Communications, 2018, 54, 14085-14088.	2.2	23
244	An Unexpected Carbon Dioxide Insertion in the Reaction of Trans-2,4-Disubstituted Azetidine, Trans-2,5-Disubstituted Pyrrolidine, or Trans-2,6-Disubstituted Piperidine with Diphenylthiophosphinic Chloride and Diphenylselenophosphinic Chloride. Journal of Organic Chemistry, 2000, 65, 3443-3448.	1.7	22
245	Chiral phosphine Lewis bases in catalytic, asymmetric aza-Morita-Baylis-Hillman reaction. Pure and Applied Chemistry, 2005, 77, 2105-2110.	0.9	22
246	Palladiumâ€Catalyzed Coupling Reactions of Diarylvinylidenecyclopropanes with 2â€lodophenol and <i>N</i> â€(2â€lodophenyl)â€4â€methylbenzenesulfonamide. European Journal of Organic Chemistry, 2009, 200 270-274.)91.2	22
247	Gold(I) Catalysis: Selective Synthesis of Six―or Sevenâ€Membered Heterocycles from Epoxy Alkynes. European Journal of Organic Chemistry, 2009, 2009, 3129-3133.	1.2	22
248	BF ₃ â <oet<sub>2â€Catalyzed Intermolecular Reactions of Vinylidenecyclopropanes with Bis(<i>p</i>healkoxyphenyl)methanols: A Novel Cationic 1,4â€Arylâ€Migration Process. Chemistry - A European Journal, 2010, 16, 5163-5172.</oet<sub>	1.7	22
249	Selectfluor promoted NHC–oxazoline gold(<scp>i</scp>) complex catalyzed cycloaddition/oxidation reaction of enynones with alkenes. Organic Chemistry Frontiers, 2015, 2, 1475-1484.	2.3	22
250	A Selective Rh ^I â€Catalyzed Substrateâ€Controlled Câ^'C Bond Activation of Benzyl Sulfonamide/Alcoholâ€Tethered Alkylidenecyclopropanes. Chemistry - A European Journal, 2016, 22, 11549-11553.	1.7	22
251	C(sp ³)â^'H Functionalizations Promoted by the Gold Carbene Generated from Vinylidenecyclopropanes. Chemistry - A European Journal, 2016, 22, 18080-18084.	1.7	22
252	Pd(II)-Catalyzed Tandem Heterocyclization of 1-(1-Alkynyl)cyclopropyl Oxime Derivatives for the Synthesis of Functionalized Pyrroles. Organic Letters, 2016, 18, 3930-3933.	2.4	22

#	Article	IF	CITATIONS
253	Diastereo- and enantioselective Mannich/cyclization cascade reaction of isocyanoacetates with cyclic sulfamide ketimines by cinchona alkaloid squaramide/AgOAc cooperative catalysis. Organic and Biomolecular Chemistry, 2018, 16, 4641-4649.	1.5	22
254	Gold(I) or Gold(III) as Real Intermediate Species in Gold-Catalyzed Cycloaddition Reactions of Enynal/Enynone?. ACS Catalysis, 2020, 10, 6682-6690.	5.5	22
255	A New Method for Nitration of Phenolic Compounds. Advanced Synthesis and Catalysis, 2003, 345, 1197-1202.	2.1	21
256	Reactions of methylenecyclobutanes with silver acetate and iodine. Tetrahedron, 2007, 63, 9599-9604.	1.0	21
257	A Threeâ€Component Condensation for the Construction of the Spiro[indolineâ€3,3′â€piperidin]â€2â€one Skeleton. European Journal of Organic Chemistry, 2012, 2012, 2792-2800.	1.2	21
258	Asymmetric [4+2] Annulations of Isatins with Butâ€3â€ynâ€2â€one. Advanced Synthesis and Catalysis, 2013 3344-3350.	3,355, 2.1	21
259	Enantioselective Rhodium atalyzed Dearomative Arylation or Alkenylation of Quinolinium Salts. Angewandte Chemie, 2016, 128, 3840-3844.	1.6	21
260	A gold(<scp>i</scp>)-catalyzed intramolecular tandem cyclization reaction of alkylidenecyclopropane-containing alkynes. Chemical Communications, 2017, 53, 11666-11669.	2.2	21
261	Catalyst-controlled synthesis of 4-amino-isoquinolin- $1(2 < i > H < /i >)$ -one and oxazole derivatives. Organic Chemistry Frontiers, 2018, 5, 1466-1470.	2.3	21
262	Nickel-Catalyzed Synthesis of Benzo[<i>b</i>)naphtho[1,2- <i>d</i>)azepine via Intramolecular Radical Tandem Cyclization of Alkyl Bromide-Tethered Alkylidenecyclopropanes. Organic Letters, 2018, 20, 6229-6233.	2.4	21
263	A simple synthetic method for chiral 1,2-epoxides and the total synthesis of a chiral pheromone epoxide. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 53-57.	1.3	20
264	The Reaction of Amines with Benzyl Halides under CO2 Atmosphere. Helvetica Chimica Acta, 2001, 84, 3357-3365.	1.0	20
265	Baylis-Hillman Reaction of Arylaldehydes with Phenyl Vinyl Ketone, Phenyl Acrylate, and Phenyl Thioacrylate. Helvetica Chimica Acta, 2002, 85, 1051.	1.0	20
266	Palladium-Catalyzed Cross-Coupling Reactions of 2-lodo-4-(phenylchalcogenyl)-1-butenes. Journal of Organic Chemistry, 2005, 70, 10420-10425.	1.7	20
267	An Efficient Route to 2-Substituted <i>N</i> -(1-Amino-3-methylpyrrol) amides by Ring-Opening Cyclization of Benzylidene- and Alkylidenecyclopropylcarbaldehydes with Hydrazides. Journal of Organic Chemistry, 2009, 74, 5983-5986.	1.7	20
268	HOTfâ€Catalyzed Rearrangement of Methylenecyclopropane Aryl and Alkyl Alcohols. European Journal of Organic Chemistry, 2010, 2010, 4106-4110.	1.2	20
269	Gold($\langle scp \rangle i \langle scp \rangle$)-catalyzed dehydrogenative cycloisomerization of 1,5-enynes. Chemical Communications, 2016, 52, 10799-10802.	2.2	20
270	Phosphineâ€Initiated Cascade Annulation of β′â€Acetoxy Allenoate and <i>p</i> àêQuinols: Access to Ring Fused Hexahydroindeno Furan Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 2552-2559.	2.1	20

#	Article	IF	Citations
271	Phosphine $\hat{\epsilon}$ catalyzed Intermolecular Annulations of Fluorinated <i>ortho</i> \hat{i}\hat{\epsilon}\hat{\epsilon}\text{minophenones with Alkynones <i}\hat{\epsilon}\hat{\epsilon}' 2019,="" 2129-2135.<="" 361,="" [3+2]="" [4+2]="" advanced="" and="" catalysis,="" cycloaddition.="" or="" switchable="" synthesis="" td="" the=""><td>2.1</td><td>20</td></i}\hat{\epsilon}\hat{\epsilon}'>	2.1	20
272	Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 374-379.	2.3	20
273	Asymmetric Reactions Catalyzed by Chiral Tertiary Phosphines. Chinese Journal of Chemistry, 2020, 38, 1395-1421.	2.6	20
274	Asymmetric Addition of Diethylzinc to Diphenylphosphinoyl-Imines Catalyzed by Copper(II) Trifluoromethanesulfonate-Chiral ($28e^2$ -Ethylamino- $[1,18e^2]$ binaphthalenyl-2-yl)-thiophosphoramidic AcidO,O $8e^2$ -Diaryl Ester Ligands. Advanced Synthesis and Catalysis, 2006, 348, 2237-2242.	2.1	19
275	Gold(i)-catalyzed intramolecular hydroamination and ring-opening of sulfonamide-substituted 2-(arylmethylene)cyclopropylcarbinols. Organic and Biomolecular Chemistry, 2012, 10, 3763.	1.5	19
276	Catalyst-Controlled Product Selectivity for Cycloaddition of Bis(indol-3-yl)-allenes to Fused Spiroindolines and Mechanistic Studies. Organic Letters, 2019, 21, 8250-8255.	2.4	19
277	Rhodium(ii)-catalyzed divergent intramolecular tandem cyclization of N- or O-tethered cyclohexa-2,5-dienones with 1-sulfonyl-1,2,3-triazole: synthesis of cyclopropa[cd]indole and benzofuran derivatives. Organic Chemistry Frontiers, 2019, 6, 2884-2891.	2.3	19
278	Heptadecafluorooctanesulfonic acid catalyzed ring opening reactions of methylenecyclopropanes with aromatic amines, sulfonamides and alcohols in supercritical carbon dioxide. Green Chemistry, 2003, 5, 85-88.	4.6	18
279	Lewis Acid Mediated Reactions of 1-Cyclopropyl-2-arylethanones with Allenic Esters:  A Facile Synthetic Protocol for the Preparation of Dihydrofuro[2,3- <i>h</i>)chromen-2-one Derivatives. Organic Letters, 2007, 9, 4017-4020.	2.4	18
280	Lewis Acid-Mediated Reactions of 1-Cyclopropyl-2-arylethanone Derivatives with Allenic Ester, Ethyl Acetoacetate, and Methyl Acrylate. Journal of Organic Chemistry, 2008, 73, 5311-5318.	1.7	18
281	A Synthetic Protocol of Trans-Substituted Cyclopentenes via the Ring-Opening Rearrangement of MCP Alkenyl Derivatives. Journal of Organic Chemistry, 2010, 75, 902-905.	1.7	18
282	Thermally Induced Electrocyclic Reaction of Methylenecyclopropane Methylene Diketone Derivatives: A Facile Method for the Synthesis of Spiro[2.5]octa-3,5-dienes. Organic Letters, 2010, 12, 5120-5123.	2.4	18
283	Intramolecular cyclizations of cyclopropenes with indole. Chemical Communications, 2016, 52, 7245-7248.	2.2	18
284	Gold(I)â€Catalyzed Cycloisomerization of <i>ortho</i> â€(Propargyloxy)arenemethylenecyclopropanes Controlled by Adjacent Substituents at Aromatic Rings. Chemistry - A European Journal, 2017, 23, 6845-6852.	1.7	18
285	Tunable regiodivergent phosphine-catalyzed [3 + 2] cycloaddition of alkynones and trifluoroacetyl phenylamides. Organic Chemistry Frontiers, 2017, 4, 2392-2402.	2.3	18
286	Base-promoted [3 + 3] cyclization of cyclopropenones and cyclopropenethiones with amides for the synthesis of $6 < i > H < /i > -1,3$ -oxazin-6-ones and $6 < i > H < /i > -1,3$ -thiazin-6-ones. Organic Chemistry Frontiers, 2018, 5, 1267-1271.	2.3	18
287	Gold-catalyzed ring enlargement and cycloisomerization of alkynylamide tethered alkylidenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2980-2985.	2.3	18
288	Catalyst-free geminal aminofluorination of <i>ortho</i> -sulfonamide-tethered alkylidenecyclopropanes <i>via</i> a Wagner–Meerwein rearrangement. Chemical Communications, 2018, 54, 10503-10506.	2.2	18

#	Article	IF	CITATIONS
289	A Formal Condensation and [4+1] Annulation Reaction of 3â€Isothiocyanato Oxindoles with Aza―o â€Quinone Methides. Advanced Synthesis and Catalysis, 2019, 361, 5466-5471.	2.1	18
290	Dihalogenation ofgem-Aryl-Disubstituted Methylenecyclopropanes by DEAD, DIAD/TiX4 or Free Halogen. European Journal of Organic Chemistry, 2004, 2004, 4894-4900.	1.2	17
291	Privileged chiral catalysts in asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reaction. Science Bulletin, 2010, 55, 1699-1711.	1.7	17
292	DABCOâ€Mediated [4+2] Annulation of Butâ€3â€ynâ€2â€one and Activated Ketones: Facile Preparation of 2,3â€Dihydropyranâ€4â€one. European Journal of Organic Chemistry, 2012, 2012, 3338-3341.	1.2	17
293	Morita–Baylis–Hillman reactions of isatins with allenoates. Tetrahedron, 2012, 68, 4899-4905.	1.0	17
294	Ruthenium atalyzed Intramolecular [2+2+2] Cycloaddition and Tandem Crossâ€Metathesis of Triynes and Enediynes. ChemistryOpen, 2013, 2, 63-68.	0.9	17
295	Diastereo―and Enantioselective Michael Addition of 3â€Substituted Oxindoles to Trifluoromethylâ€Substituted Nitro Olefins Catalyzed by a <i>Cinchona</i> À€Alkaloidâ€Derived Squaramide. European Journal of Organic Chemistry, 2014, 2014, 644-653.	1.2	17
296	Iron(III)â€Catalyzed Cycloisomerizations of Acetal–Vinylidenecyclopropanes: An Efficient Synthetic Route to 1,2â€Disubstituted Cyclobutenes. Chemistry - A European Journal, 2015, 21, 15964-15969.	1.7	17
297	Cu(I)-Catalyzed Coupling and Cycloisomerization of Diazo Compounds with Terminal Yne-Alkylidenecyclopropanes: Synthesis of Functionalized Cyclopenta[<i>b</i>)naphthalene Derivatives. Organic Letters, 2018, 20, 4516-4520.	2.4	17
298	A rhodium(<scp>iii</scp>)-catalyzed tunable coupling reaction of indole derivatives with alkylidenecyclopropanes <i>i>via</i> Câ€"H activation. Chemical Communications, 2019, 55, 7558-7561.	2.2	17
299	Br $\tilde{A}_{,n}$ nsted acid-mediated ring-opening reactions of methylenecyclopropanes: a dramatic counter ion effect. Tetrahedron, 2004, 60, 11895-11901.	1.0	16
300	Electronic halocyclization and radical haloazidation of benzene-linked 1,7-dienes for the synthesis of functionalized 3,1-benzoxazines. Organic and Biomolecular Chemistry, 2017, 15, 634-639.	1.5	16
301	<i>N</i> ² â€Selective Autocatalytic Ditriazolylation Reactions of Cyclopropenones and Tropone with <i>N</i> ¹ â€Sulfonylâ€1,2,3â€triazoles. Advanced Synthesis and Catalysis, 2017, 359, 3304-3310.	2.1	16
302	Temperatureâ€Dependent <i>Cinchona</i> Alkaloid Squaramideâ€Catalyzed Asymmetric Formal [3+2] Cycloaddition of Isocyanoacetates with βâ€Trifluoromethylated Enones. European Journal of Organic Chemistry, 2018, 2018, 3997-4005.	1.2	16
303	Phosphine-catalyzed fixation of CO \langle sub \rangle 2 \langle /sub \rangle with \hat{l}^3 -hydroxyl alkynone under ambient temperature and pressure: kinetic resolution and further conversion. Organic Chemistry Frontiers, 2019, 6, 2420-2429.	2.3	16
304	Gold(I)â€Catalyzed Ring Expansion of Alkynylcyclopropyl Allyl Ethers to Construct Tetrasubstituted Methylenecyclobutanones: A Mechanistic Investigation about the Character of Catalytic Amount of Water. Advanced Synthesis and Catalysis, 2019, 361, 2321-2328.	2.1	16
305	C(sp ³)â€"C(sp ³) Bond Breaking in Methylenecyclopropanes Involving a Au ^I /Au ^{III} Catalytic Cycle. European Journal of Organic Chemistry, 2010, 2010, 5454-5459.	1.2	15
306	Gold(I)â€Catalyzed Intramolecular Carbonâ€Oxygen Bond Cleavage Reaction <i>via</i> Gold Carbenes Derived from Vinylidenecyclopropanes. Advanced Synthesis and Catalysis, 2016, 358, 3002-3009.	2.1	15

#	Article	IF	Citations
307	Rhodium(<scp>ii</scp>)-catalyzed intermolecular [3 + 2] annulation of N-vinyl indoles with N-tosyl-1,2,3-triazoles via an aza-vinyl Rh carbene. Organic Chemistry Frontiers, 2017, 4, 2459-2464.	2.3	15
308	Rh(II)-Catalyzed Chemoselective Oxidative Amination and Nucleophilic Trapping of <i>gem</i> -Dimethyl Alkynyl-Tethered Sulfamates. Organic Letters, 2018, 20, 84-87.	2.4	15
309	Construction of spirothioureas having an amino quaternary stereogenic center via a [3 + 2] annulation of 3-isothiocyanato oxindoles with 2-aminoacrylates. Organic and Biomolecular Chemistry, 2018, 16, 9218-9222.	1.5	15
310	Gold- and silver-catalyzed intramolecular annulation and rearrangement of aniline-linked 1,6-enynes containing methylenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2091-2097.	2.3	15
311	Visibleâ€Lightâ€Induced Trifluoromethylation of Isonitrileâ€Substituted Indole Derivatives: Access to 1â€(Trifluoromethyl)â€4,9â€dihydroâ€3 <i>H</i> à6€pyrido[3,4â€b]indole and <i>β</i> à6€Carboline Derivatives. Ac Synthesis and Catalysis, 2018, 360, 2959-2965.	lv a nced	15
312	<i>Cinchona /i> Alkaloid Squaramide-Catalyzed Asymmetric Ugi-Type Reaction of Isocyanoacetates with C,N-Cyclic Azomethine Imines: Access to Chiral Oxazole-Substituted Tetrahydroisoquinolines. Journal of Organic Chemistry, 2019, 84, 14487-14497.</i>	1.7	15
313	Total synthesis of gigantetrocin A. Chirality, 2000, 12, 581-589.	1.3	14
314	Titanium(IV) Bromide and Boron(III) Tribromide Promoted Baylis-Hillman Reactions of Arylaldehydes with But-3-yn-2-one. Helvetica Chimica Acta, 2002, 85, 841.	1.0	14
315	A Novel Reaction of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) or 1,5-Diazabicyclo[4.3.0]non-5-ene (DBN) with Benzyl Halides in the Presence of Water. Helvetica Chimica Acta, 2002, 85, 1355.	1.0	14
316	Oxidative Isomerization of Vinylidenecyclopropanes to Dimethylenecyclopropanes and Brønsted Acid atalyzed Further Transformation. European Journal of Organic Chemistry, 2011, 2011, 243-248.	1.2	14
317	Exploration of A New Zwitterion: Phosphineâ€Catalyzed [2+1+2] Cycloaddition Reaction. Advanced Synthesis and Catalysis, 2017, 359, 1663-1671.	2.1	14
318	Phosphineâ€Catalyzed [3+2] or [4+2] Cycloaddition/S _N 2 Substitution Domino Reaction of <i>ortho</i> â€Aminotrifluoroaceto―phenone Derivatives with Hexâ€3â€ynâ€2â€one: Preparation of Functionalized 1â€Benzazepine Compounds. Advanced Synthesis and Catalysis, 2017, 359, 3176-3185.	2.1	14
319	$\langle i \rangle p \langle i \rangle$ -Toluenesulfonic acid-promoted autocatalytic hydrolyzation of 1-tosyl-1,2,3-triazoles. Synthetic Communications, 2018, 48, 1227-1234.	1.1	14
320	Pd(II)-Catalyzed Cyclization–Oxidation of Urea-Tethered Alkylidenecyclopropanes. Organic Letters, 2018, 20, 3017-3020.	2.4	14
321	A facile method for the synthesis of trifluoromethylthio-/chloro-homoallylic alcohols from methylenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2030-2034.	2.3	14
322	A tritopic carbanionic N-heterocyclic dicarbene and its homo- and heterometallic coinage metal complexes. Chemical Communications, 2018, 54, 5736-5739.	2.2	14
323	Gold($\langle scp \rangle i \langle scp \rangle$)-catalyzed enantioselective synthesis of polycyclic indoline skeletons and enantiomerically enriched \hat{i}^2 -substituted tryptamine-allenes by kinetic resolution. Chemical Communications, 2019, 55, 4210-4213.	2.2	14
324	Rhodium(II)â€Catalyzed Intramolecular Transannulation of 4â€Methoxycyclohexaâ€2,5â€dienone Tethered 1â€Sulfonylâ€1,2,3â€triazoles: Synthesis of Azaspiro[5.5]undecane Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3430-3435.	2.1	14

#	Article	IF	Citations
325	Visible-Light-Mediated Decarboxylative Tandem Carbocyclization of Acrylamide-Attached Alkylidenecyclopropanes: Access to Polycyclic Benzazepine Derivatives. Organic Letters, 2020, 22, 5212-5216.	2.4	14
326	Visible light mediated synthesis of 4-aryl-1,2-dihydronaphthalene derivatives <i>via</i> single-electron oxidation or MHAT from methylenecyclopropanes. Organic Chemistry Frontiers, 2021, 8, 94-100.	2.3	14
327	Silyl Radical-Mediated Carbocyclization of Acrylamide-/Vinyl Sulfonamide-Attached Alkylidenecyclopropanes <i>via</i> Photoredox Catalysis with a Catalytic Amount of Silane Reagent. ACS Catalysis, 2021, 11, 4372-4380.	5.5	14
328	Direct Activation of a Remote C(sp ³)â€"H Bond Enabled by a Visibleâ€Light Photosensitized Allene Moiety. Angewandte Chemie - International Edition, 2021, 60, 12053-12059.	7.2	14
329	The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chemical Science, 2022, 13, 1478-1483.	3.7	14
330	Synthesis of novel chiral Cu or Ag/S,N cluster complexes and absolute stereostructures as determined by x-ray crystallography. Chirality, 2003, 15, 605-608.	1.3	13
331	Synthesis of an axially chiral Ir–NHC complex derived from BINAM. Applied Organometallic Chemistry, 2005, 19, 40-44.	1.7	13
332	Nd(OTf) ₃ â€Catalyzed Cascade Reactions of Vinylidenecyclopropanes with Enynol: A New Method for the Construction of the 5–7–6 Tricyclic Framework and Its Scope and Limitations. European Journal of Organic Chemistry, 2009, 2009, 4036-4040.	1.2	13
333	Preparation of Di-μ-chlorobis[π-1-chloro-1-aryl-2-(2′,2′-diarylvinyl)allyl]palladium(II) Complexes and a Novel Dehydrogenative Rearrangement of Arylvinylcyclopropenes for the Synthesis of 7 <i>H</i> -Benzo[<i>c</i>]fluorene Derivatives. Organometallics, 2011, 30, 627-632.	1.1	13
334	Phosphineâ€Promoted Cyclization of Dicyclopropenones. Advanced Synthesis and Catalysis, 2013, 355, 3545-3552.	2.1	13
335	Palladiumâ€Initiated Radical Cascade Stereoselective Iodofluoroalkylation/Cycloisomerization of Eneâ€vinylidenecyclopropanes. Chemistry - A European Journal, 2016, 22, 10387-10392.	1.7	13
336	Isolation and characterization of gem-diaurated species having two C–Au σ bonds in gold(⟨scp⟩i⟨ scp⟩)-activated amidiniumation of alkynes. Dalton Transactions, 2016, 45, 17091-17094.	1.6	13
337	Mechanistic studies on the atmosphere and light tuned synthesis of cyclobuta/penta[<i>b</i>) indoles. Organic Chemistry Frontiers, 2018, 5, 1890-1895.	2.3	13
338	Palladium(0)-Catalyzed Intramolecular Cascade Cyclization of Methylenecyclopropanes. Organic Letters, 2018, 20, 7141-7144.	2.4	13
339	Six-Membered Janus-type Ditopic N-Heterocyclic Carbene Coinage Metal Complexes. Organometallics, 2019, 38, 2132-2137.	1.1	13
340	Visible Light Induced Cyclization to Spirobi[indene] Skeletons from Functionalized Alkylidienecyclopropanes. Organic Letters, 2020, 22, 2494-2499.	2.4	13
341	Brønsted Acid Mediated Double Friedel-Crafts Reaction of Methylenecyclopropanes with Arenes. European Journal of Organic Chemistry, 2005, 2005, 4002-4008.	1.2	12
342	Lewisâ€Acidâ€Catalyzed Reactions of Bis(4â€alkoxyphenyl)methanol with (Diarylmethylene)―and (Dialkylmethylene)cyclopropanes. European Journal of Organic Chemistry, 2009, 2009, 4971-4982.	1.2	12

#	Article	IF	CITATIONS
343	Palladium Acetate Catalyzed Oxidative Aromatization of Methylenecyclopropanes. European Journal of Organic Chemistry, 2010, 2010, 3307-3311.	1.2	12
344	Goldâ€Catalyzed Cascade Oxidative Cyclization and Arylation of Allenoates. European Journal of Organic Chemistry, 2013, 2013, 7366-7371.	1.2	12
345	Synthesis of Highly Functionalized Aminoindolizines by Titanium(IV) Chloride Mediated Cycloisomerization and Phosphineâ€Catalyzed Azaâ€Michael Addition Reactions. Asian Journal of Organic Chemistry, 2013, 2, 480-485.	1.3	12
346	Lewis Acid Catalyzed Intramolecular Ring-Opening of Triazole-Substituted Methylenecyclopropanes: An Approach to 4H-[1,2,3]Triazolopyrazines and 4H-[1,2,3]Triazolo[1,4]diazepines. Synlett, 2014, 25, 2293-2296.	1.0	12
347	Phosphane―and Amineâ€Catalyzed Ringâ€Opening Reactions of Cyclopropenones with Isatin Derivatives: Synthesis of Carboxylated 1 <i>H</i> à6€Indoles and Multisubstituted 2 <i>H</i> à6€Pyranâ€2â€ones. European Journal of Organic Chemistry, 2014, 2014, 2672-2676.	1.2	12
348	Sequential oxidation/thermal induced intramolecular [2+2] cycloaddition of propynol-vinylidenecyclopropanes: access to novel cyclobutene-containing spiro[2.3]hexenes. Tetrahedron, 2016, 72, 584-591.	1.0	12
349	Catalytic domino amination and oxidative coupling of gold acetylides and isolation of key vinylene digold intermediates as a new class of ditopic N-heterocyclic carbene complexes. Chemical Communications, 2017, 53, 10835-10838.	2.2	12
350	Synthesis of 1,2â€Dihydrocyclobuta[b]quinoline Derivatives from Isocyanophenylâ€Substituted Methylenecyclopropanes. Advanced Synthesis and Catalysis, 2017, 359, 3437-3443.	2.1	12
351	Baseâ€Promoted Tandem Cyclization for the Synthesis of Benzonitriles by Câ^'C Bond Construction. Advanced Synthesis and Catalysis, 2018, 360, 808-813.	2.1	12
352	Thermally-induced intramolecular $[2 + 2]$ cycloaddition of acrylamide-tethered alkylidenecyclopropanes. Organic and Biomolecular Chemistry, 2018, 16, 6399-6404.	1.5	12
353	Organocatalyzed asymmetric tandem conjugate addition–protonation of isocyanoacetates to 2-chloroacrylonitrile. Organic and Biomolecular Chemistry, 2019, 17, 639-645.	1.5	12
354	Palladium(II)â€Catalyzed Intermolecular Cascade Cyclization of Methylenecyclopropanes with Aromatic Alkynes: Construction of Spirocyclic Compounds Containing Indene and 1,2â€Dihydronaphthalene Moieties. Advanced Synthesis and Catalysis, 2019, 361, 3446-3450.	2.1	12
355	Cu(I)-Catalyzed Intramolecular Tandem Cyclization of $\langle i \rangle N \langle i \rangle$ -Indole-Tethered Cyclopropenes: Synthesis of Functionalized Hydrogenated Diazabenzo[$\langle i \rangle a \langle i \rangle$]cyclopenta[$\langle i \rangle cd \langle i \rangle$]azulene Derivatives. Organic Letters, 2019, 21, 3162-3166.	2.4	12
356	Rhodium(III)â€Catalyzed Cross Coupling of Sulfoxonium Ylides and 1,3â€Diynes to Produce Naphtholâ€Indole Derivatives: An Arene ortho Câ^3H Activation/Annulation Cascade. ChemCatChem, 2020, 12, 5903-5906.	1.8	12
357	Rhodium ^{III} / <scp>Silver^I</scp> Relay Catalyzed Câ€"H Aminomethylation with Imine Equivalents and Lewis Acid Catalyzed [4+2] Cycloaddition of Indoles with Triarylhexahydrotriazine ^{â€} . Chinese Journal of Chemistry, 2020, 38, 947-951.	2.6	12
358	Visible-light mediated cascade cyclization of ene-vinylidenecyclopropanes: access to fluorinated heterocyclic compounds. Organic Chemistry Frontiers, 2021, 8, 3796-3801.	2.3	12
359	A silver-catalyzed domino inverse electron-demand oxo-Diels–Alder reaction of 3-cyclopropylideneprop-2-en-1-ones with 2,3-dioxopyrrolidines ⟨i⟩via⟨ i⟩ cyclobutane-fused furan. Chemical Communications, 2021, 57, 3599-3602.	2.2	12
360	Imidazoleâ€Mediated Cascade [2 + 2 + 2] Annulation Reactions: A Highly Diastereoselective Synthetic Protocol for the Construction of Multiply Substituted Cyclohexanes. European Journal of Organic Chemistry, 2008, 2008, 6168-6174.	1.2	11

#	Article	IF	Citations
361	Photolysis of diarylvinylcyclopropenes for the construction of 1-methylene-8a-aryl-1,8a-dihydroazulene skeletons. Chemical Communications, 2009, , 1392.	2.2	11
362	Palladium atalyzed Reactions of 3â€6ubstituted Methylenecyclopropanes. European Journal of Organic Chemistry, 2010, 2010, 6448-6453.	1.2	11
363	Ozonation of methylenecyclopropanes. Organic Chemistry Frontiers, 2014, 1, 770-773.	2.3	11
364	Gold atalyzed Intramolecular Cyclizations of Cyclopropenes with Propargylic Esters. ChemistryOpen, 2016, 5, 33-37.	0.9	11
365	Gold atalyzed Fluorination–Hydration: Synthesis of αâ€Fluorobenzofuranones from 2â€Alkynylphenol Derivatives. Chemistry - A European Journal, 2016, 22, 14739-14745.	1.7	11
366	Gold(i) catalyzed cascade cyclization: intramolecular two-fold nucleophilic addition to vinylidenecyclopropanes (VDCPs). Organic Chemistry Frontiers, 2018, 5, 197-202.	2.3	11
367	A Catalystâ€Free Selfâ€Catalyzed [3+2] Cycloaddition Reaction of 3â€Isothiocyanato Oxindoles and Vinylpyridines. European Journal of Organic Chemistry, 2018, 2018, 4905-4916.	1.2	11
368	Rhodium-catalyzed asymmetric hydroamination and hydroindolation of keto-vinylidenecyclopropanes. Chemical Science, 2018, 9, 5074-5081.	3.7	11
369	Synthesis of Diiodinated All-Carbon 3,3′-Diphenyl-1,1′-spirobiindene Derivatives via Cascade Enyne Cyclization and Electrophilic Aromatic Substitution. Journal of Organic Chemistry, 2019, 84, 9282-9296.	1.7	11
370	Lewis or $Br\tilde{A}_{,n}$ nsted acid-catalysed reaction of propargylic alcohol-tethered alkylidenecyclopropanes with indoles and pyrroles for the preparation of polycyclic compounds tethered with indole or pyrrole motif. Organic and Biomolecular Chemistry, 2020, 18, 135-139.	1.5	11
371	Stereo―and Regioselective Construction of Spirooxindoles Having Continuous Spiral Rings via Asymmetric [3+2] Cyclization of 3â€Isothiocyanato Oxindoles with Thioaurone Derivatives. European Journal of Organic Chemistry, 2020, 2020, 6614-6622.	1.2	11
372	Comprehensive transcriptomic analysis in response to abscisic acid in Salvia miltiorrhiza. Plant Cell, Tissue and Organ Culture, 2021, 147, 389-404.	1.2	11
373	Reduction of Activated Carbonyl Groups Using Alkylphosphanes as Reducing Agents: A Mechanistic Study. European Journal of Organic Chemistry, 2012, 2012, 2386-2393.	1.2	10
374	Diels–Alder dimerization of Morita–Baylis–Hillman acetates catalyzed by organocatalysts. Research on Chemical Intermediates, 2013, 39, 5-18.	1.3	10
375	A Oneâ€Pot Approach to Phenanthridine Derivatives through Twoâ€Step Rhodium(I) and Gold(I) Catalysis. Advanced Synthesis and Catalysis, 2015, 357, 3081-3090.	2.1	10
376	Gold(I)â€Catalyzed 1,3â€∢i>Oà€Transposition Reactions: Ynesulfonamides to Ynamides. European Journal of Organic Chemistry, 2015, 2015, 4108-4113.	1.2	10
377	Facile Syntheses of Nâ€Heterocyclic Carbene Precursors through I ₂ ―or NISâ€Promoted Amidiniumation of <i>N</i> à€Alkenyl Formamidines. Chemistry - an Asian Journal, 2016, 11, 1361-1365.	1.7	10
378	Chiral Bidentate NHC Ligands Based on the 1,1′â€Binaphthyl Scaffold: Synthesis and Application in Transitionâ€Metal atalyzed Asymmetric Reactions. Chemical Record, 2016, 16, 2740-2753.	2.9	10

#	Article	IF	CITATIONS
379	Phosphineâ€Catalyzed Direct δâ€Carbon Addition of Alkynones to Electronâ€Deficient Carbonylâ€Groupâ€Containing Compounds: Preparation of Conjugated Dienes. ChemCatChem, 2016, 8, 3112-3117.	1.8	10
380	Dual-role of PtCl ₂ catalysis in the intramolecular cyclization of (hetero)aryl-allenes for the facile construction of substituted 2,3-dihydropyrroles and polyheterocyclic skeletons. Chemical Communications, 2017, 53, 5966-5969.	2,2	10
381	Copper(i)-catalyzed carbocyclization of acrylamide-tethered alkylidenecyclopropanes with diaryliodonium salts. Organic and Biomolecular Chemistry, 2017, 15, 9616-9621.	1.5	10
382	Indium(<scp>iii</scp>)-catalyzed intramolecular dearomative cycloaddition of <i>N</i> -sulfonylaziridines to indoles: facile synthesis of tetracyclic pyrroloindoline skeletons. Organic Chemistry Frontiers, 2018, 5, 423-427.	2.3	10
383	Phosphine catalyzed \hat{i} -carbon addition and isomerization of alkynones to ketimines: the preparation of 1,3-diene substituted dihydroquinazolinones and 3-aminooxindoles. Organic Chemistry Frontiers, 2018, 5, 210-215.	2.3	10
384	Gold(I)-Catalyzed and Ligand-Controlled Regioselective Cascade Cycloisomerizations of Bis(indolyl)-1,3-diynes and a Mechanistic Explanation. Organic Letters, 2019, 21, 7799-7803.	2.4	10
385	Rh(<scp>i</scp>)-Catalyzed stereoselective intramolecular cycloaddition reactions of ene-vinylidenecyclopropanes for the construction of fused 6,5-bicyclic skeletons with a quaternary all-carbon stereocenter. Organic Chemistry Frontiers, 2019, 6, 2506-2513.	2.3	10
386	Mitsunobu-initiated cascade cyclization of $\langle i \rangle p \langle i \rangle$ -quinamines and 2-furanylmethanols: highly regioand diastereoselective synthesis of functionalized hydrobenzo[$\langle i \rangle c \langle i \rangle, \langle i \rangle d \langle i \rangle$]indoles. Organic and Biomolecular Chemistry, 2019, 17, 3737-3740.	1.5	10
387	Cinchona alkaloid derived squaramide catalyzed diastereo- and enantioselective Michael addition of isocyanoacetates to 2-enoylpyridines. Tetrahedron, 2019, 75, 1171-1179.	1.0	10
388	Silver/Rhodium Relay Catalysis Enables Câ^'H Functionalization of <i>Inâ€Situ</i> Generated Isoquinolines with Sulfoxonium Ylides: Construction of Hexahydrodibenzo[<i>a</i> , <i>g</i>]quinolizine Scaffolds. Advanced Synthesis and Catalysis, 2021, 363, 2664-2669.	2.1	10
389	Intramolecular difunctionalization of methylenecyclopropanes tethered with carboxylic acid by visible-light photoredox catalysis. Organic Chemistry Frontiers, 2021, 8, 4527-4532.	2.3	10
390	Reactivities of allenic and olefinic Michael acceptors towards phosphines. Chemical Communications, 2022, 58, 3358-3361.	2.2	10
391	Visible-light-mediated intramolecular radical cyclization of $\hat{l}\pm$ -brominated amide-tethered alkylidenecyclopropanes. Chemical Communications, 2022, 58, 3653-3656.	2.2	10
392	A Novel Chiral Silver(I) Complex from the Reaction of Thiazolidinethione with AgOAc. European Journal of Inorganic Chemistry, 2002, 2002, 3264-3267.	1.0	9
393	Axially dissymmetricN-thioacylated (S)-(-)-1,1?-binaphthyl-2,2?-diamine ligands for copper-catalyzed asymmetric Michael addition of diethylzinc to ?,?-unsaturated ketone. Chirality, 2004, 16, 642-651.	1.3	9
394	Ringâ€Opening Reaction of Methylenecyclopropanes Derived from Methylenecyclopropyl Aldehydes through Cope Rearrangement. European Journal of Organic Chemistry, 2010, 2010, 6038-6042.	1.2	9
395	Metal-Free Ring Expansions of Methylenecyclopropanes Through Nitrene Equivalent. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	1.2	9
396	Mechanistic studies for dirhodium-catalyzed ring expansion reactions. Organic Chemistry Frontiers, 2017, 4, 986-994.	2.3	9

#	Article	IF	CITATIONS
397	Fluorination of Alkylidenecyclopropanes. Asian Journal of Organic Chemistry, 2018, 7, 1924-1933.	1.3	9
398	Palladium atalyzed Cascade Reductive and Carbonylative Cyclization of Ortho â€lodoâ€Tethered Methylenecyclopropanes (MCPs) Using N â€Formylsaccharin as CO Source. Advanced Synthesis and Catalysis, 2019, 361, 5677-5683.	2.1	9
399	Cu(<scp>i</scp>)-Catalyzed addition–cycloisomerization difunctionalization reaction of 1,3-enyne-alkylidenecyclopropanes (ACPs). Organic and Biomolecular Chemistry, 2020, 18, 7127-7138.	1.5	9
400	Divergent Construction of Fully Substituted Pyrroles and Cyclopentadiene Derivatives by Ynamide Annulations: 1,2-Cyclopropyl Migration versus Proton Transfer. Organic Letters, 2020, 22, 5466-5472.	2.4	9
401	Probing Phosphaneâ€Mediated [2+1] Annulation Reactions. European Journal of Organic Chemistry, 2010, 2010, 1977-1988.	1.2	8
402	Copper, Silver and Sodium Saltâ€Mediated Quaternization by Arylation: Syntheses of Nâ€Heterocyclic Carbene Precursors and 6â€ <i>H</i> â€Phenanthridine Derivatives. Chemistry - an Asian Journal, 2016, 11, 1883-1886.	1.7	8
403	Iron-catalyzed or iodine-induced intramolecular halocyclization of N-vinyl-tethered methylenecyclopropanes: facile access to halogenated 1,2-dihydroquinolines. Organic Chemistry Frontiers, 2017, 4, 1294-1298.	2.3	8
404	One-Pot Synthesis of Spirocyclopenta[⟨i⟩a⟨ i⟩]indene Derivatives via a Cascade Ring Expansion and Intramolecular Friedel–Crafts-Type Cyclization. Journal of Organic Chemistry, 2020, 85, 2438-2455.	1.7	8
405	Rhodium(III)-Catalyzed Decarboxylative Aminomethylation of Glycine Derivatives with Indoles via C–H Activation. Journal of Organic Chemistry, 2020, 85, 2838-2845.	1.7	8
406	<i>N</i> -Hydroxyphthalimide imidate esters as amidyl radical precursors in the visible light photocatalyzed C–H amidation of heteroarenes. Organic Chemistry Frontiers, 2021, 8, 1935-1940.	2.3	8
407	Reactions of 5-methylene-1,3-thiazolidine-2-thione and 5-methylene-2-oxazolidinone with isocyanates catalyzed by bases. Heteroatom Chemistry, 2001, 12, 610-616.	0.4	7
408	C2-Symmetric dialkoxyphosphoramide and dialkoxythiophosphoramide derivatives of (1R,) Tj ETQq0 0 0 rgBT /O addition reactions of diethylzinc to arylaldehydes. Chirality, 2002, 14, 90-95.	verlock 10 1.3	Tf 50 307 To 7
409	BrÃ,nsted Acid TfOH-Mediated Reactions of Methylenecyclopropanes with Nitriles. Synlett, 2004, 2004, 2343-2346.	1.0	7
410	SnCl4-Mediated Reactions of Cyclopropyl Alkyl Ketones with \hat{l}_{\pm} -Keto Esters. European Journal of Organic Chemistry, 2006, 2006, 5394-5403.	1,2	7
411	Highly N ² â€Regioselective TsOHâ€Catalyzed Olefin Hydroamination: Metalâ€Free Synthesis of <i>N</i> ² â€Alkylâ€1,2,3â€triazoles. Asian Journal of Organic Chemistry, 2017, 6, 662-665.	1.3	7
412	Rh-Catalyzed intramolecular decarbonylative cyclization of <i>ortho</i> formyl group tethered alkylidenecyclopropanes (ACPs) for the construction of 2-methylindenes. Organic Chemistry Frontiers, 2019, 6, 2667-2671.	2.3	7
413	Mechanistic studies for dirhodium-catalyzed chemoselective oxidative amination of alkynyl-tethered sulfamates. Organic Chemistry Frontiers, 2019, 6, 1123-1132.	2.3	7
414	Rapid construction of cyclopenta[b]naphthalene frameworks from propargylic alcohol tethered methylenecyclopropanes. Organic and Biomolecular Chemistry, 2020, 18, 7396-7400.	1.5	7

#	Article	IF	CITATIONS
415	Rhodium(III)â€Catalyzed Câ°'H Benzylation of Indole's C3 Position with Aza―o â€Quinone Methides. Advanced Synthesis and Catalysis, 2020, 362, 3649-3654.	2.1	7
416	Mechanistic Studies on Propargyl <scp>Alcoholâ€Tethered</scp> Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. Chinese Journal of Chemistry, 2021, 39, 295-300.	2.6	7
417	A visible-light mediated ring opening reaction of alkylidenecyclopropanes for the generation of homopropargyl radicals. Chemical Science, 2021, 12, 9088-9095.	3.7	7
418	Visible-light-mediated regioselective ring-opening hydrogenolysis of donor–acceptor cyclopropanes with DIPEA and H ₂ O. Organic Chemistry Frontiers, 2022, 9, 1960-1966.	2.3	7
419	Synthesis of two novel cobalt complexes and their crystal structures. Applied Organometallic Chemistry, 2003, 17, 175-180.	1.7	6
420	CO ₂ â€Triggered Metal Catalyst―and Solventâ€free Aminochlorination of Methylenecyclopropanes. Chinese Journal of Chemistry, 2011, 29, 2739-2743.	2.6	6
421	Synthesis of Novel N-Heterocyclic Carbene-Oxazoline Palladium Complexes and Their Applications in Suzuki-Miyaura Cross-Coupling Reaction. Synlett, 2013, 24, 1255-1259.	1.0	6
422	Rh(<scp>i</scp>)-Catalyzed intramolecular [3 + 2] cycloaddition reactions of yne-vinylidenecyclopropanes. Organic Chemistry Frontiers, 2019, 6, 1816-1820.	2.3	6
423	Dimerization–cyclization reactions of isocyanoaryl-tethered alkylidenecyclobutanes ⟨i⟩via⟨ i⟩ a triplet biradical mediated process. Organic Chemistry Frontiers, 2020, 7, 2634-2643.	2.3	6
424	Phosphine-catalyzed [3 + 2] annulation of 2-aminoacrylates with allenoates and mechanistic studies. Catalysis Science and Technology, 2020, 10, 3959-3964.	2.1	6
425	Construction of an isoquinolinone framework from carboxylic-ester-directed umpolung ring opening of methylenecyclopropanes. Chemical Communications, 2021, 57, 11201-11204.	2.2	6
426	Copper-Catalyzed Synthesis of Indolyl Benzo[<i>b</i>)carbazoles and Their Photoluminescence Property. Organic Letters, 2021, 23, 5133-5137.	2.4	6
427	The First Synthesis and isolation of a€ Bis(aryloxy)phosphorothloyisulfenyl lodides (=Bis(aryloxy)phosphinesulfenyl lodide P-Sulfides) from the Reaction of S,S′-(Diphenylstannylene) O,O,O′,O′-Tetraaryl Bis[phosphorodithioates] (=[(Diphenylstannylene)bis(thio)]bis[bis(aryloxy)phosphine P-Sulfides]) with N-lodosuccinimide.	1.0	5
428	Aza-Diels–Alder reaction catalyzed by perfluorinated metal salts in fluorous phase. New Journal of Chemistry, 2004, 28, 1286-1288.	1.4	5
429	Rhodium-Catalyzed Carbonylative Skeleton Rearrangement of 1,4-Enynes Tethered by a Cyclopropane Group. Synlett, 2014, 25, 2311-2315.	1.0	5
430	Iron(III)â€Catalyzed 1,3â€Functional Group Transposition Reactions: Synthetic Protocol to Access 3â€Substituted Indoles. Asian Journal of Organic Chemistry, 2016, 5, 423-427.	1.3	5
431	A new method to access triazole-fused spiro-guanidines from the reaction of isothiocyanates tethered N-sulfonyl-1,2,3-triazoles and amines. Organic Chemistry Frontiers, 2016, 3, 1447-1451.	2.3	5
432	Baseâ€Catalyzed Cascade Reaction of <i>ortho</i> òâ€(Propargylamino)aryl Ketones with Nâ€, Oâ€, or Sâ€Based Nucleophiles for the Synthesis of 3â€Functionalized Quinoline Scaffolds. Advanced Synthesis and Catalysis, 2018, 360, 1967-1972.	2.1	5

#	Article	IF	Citations
433	One-pot formal [3+3] cycloaddition of isocyanoacetates with in situ-derived azoalkenes for the synthesis of 1,4-dihydropyrimidine derivatives. Tetrahedron, 2021, 88, 132122.	1.0	5
434	Transition-metal-catalyzed reactions of 5-methylene-2-oxazolidinone and 5-methylene-1,3-thiazolidine-2-thione with isocyanates. Applied Organometallic Chemistry, 2003, 17, 767-775.	1.7	4
435	Axially Dissymmetric Chiral (<i>R)â€N</i> , Wâ€Bis(2â€hydroxyâ€3,5â€di <i>tert</i> à6€butylâ€arylmethyl)â€1, 1′â€binaphthaleneâ€2,2′â€diamine as Chiral Ligands in the Reaction of Diethylzinc to Aldehydes ^{â€Chinese Journal of Chemistry, 2002, 20, 1319-1325.}	மூ6.	4
436	Synthesis of Functionalized <i>i³</i> a€Lactams via Copperâ€Catalyzed Intramolecular Câ€Vinylation of Activated Methylene Compounds. Chinese Journal of Chemistry, 2010, 28, 1660-1664.	2.6	4
437	Palladium-catalyzed intramolecular rearrangement of vinylidenecyclopropanes through C–C bond activation. Organic Chemistry Frontiers, 2015, 2, 792-796.	2.3	4
438	Lewis Acidâ€Catalyzed Stereoselective [7+7] Intermolecular Cyclization of Anilineâ€Tethered Alkylidenecyclopropanes: A Oneâ€Step Synthetic Protocol of 14â€Membered Macrocyclic Dimers. Asian Journal of Organic Chemistry, 2017, 6, 802-806.	1.3	4
439	A facile method for the synthesis of dihydroquinoline-azide from the Lewis acid-catalyzed reaction of alkylidenecyclopropanes with TMSN ₃ . Organic and Biomolecular Chemistry, 2019, 17, 9990-9993.	1.5	4
440	(CH ₃) ₂ CuLi/Cu(OTf) ₂ Mediated <i>N</i> or <i>O</i> -Cyclization of Urea-Tethered Cyclobuta[<i>b</i>)]indolines. Organic Letters, 2019, 21, 129-133.	2.4	4
441	Rhodiumâ€Catalyzed Asymmetric Cycloisomerization of 1,3â€Diketones with Ketoâ€Vinylidenecyclopropanes: Synthesis of Enantiomerically Enriched Cyclic <i>β</i> Àa€Amino Alcohols. Advanced Synthesis and Catalysis, 2021, 363, 1727-1732.	2.1	4
442	Construction of Polysubstituted Spiro [2.3] or [3.3] Cyclic Frameworks Fused with a Tosylated Pyrrolidine Promoted by Visible-Light-Induced Photosensitization. Organic Chemistry Frontiers, 0, , .	2.3	4
443	The crystallographic structure of 4-hydroxy-3-methylene-4-(p-nitrophenyl)butan-2-one. Journal of Chemical Crystallography, 1999, 29, 1295-1297.	0.5	3
444	Effects of Self-coiling of Organic Molecules on Intramolecular Exciplex Formation and Fluorescence Quenching in DX-H2O Solvent System. Chinese Journal of Chemistry, 2010, 20, 160-167.	2.6	3
445	One pot cascade synthesis of fused heterocycles from furan-tethered terminal alkynes and aldehydes in the presence of amines and CuBr. Organic Chemistry Frontiers, 2015, 2, 394-397.	2.3	3
446	Regiospecific and stereoselective synthesis of (<i>E</i>)- and (<i>Z</i>)-2-phosphino-1-alkenyl boronates <i>via</i> Cu-catalyzed hydroboration of alkynylphosphines. New Journal of Chemistry, 2018, 42, 8342-8345.	1.4	3
447	Synthesis of Dihydroâ€2â€oxopyrrole (DPO) Building Blocks Catalyzed by Potassium Carbonate. European Journal of Organic Chemistry, 2019, 2019, 7179-7185.	1.2	3
448	Thermallyâ€Induced Intramolecular [4+2] Cycloaddition of Allylamino―or Allyloxyâ€Tethered Alkylidenecyclopropanes. Chemistry - an Asian Journal, 2021, 16, 2463-2468.	1.7	3
449	Organocatalytic asymmetric formal $[3 + 2]$ cycloaddition reaction of isocyanoacetates with saccharin-derived 1-azadienes. Organic and Biomolecular Chemistry, 2021, 19, 3687-3697.	1.5	3
450	Palladium catalyzed divergent cycloadditions of vinylidenecyclopropane-diesters with methyleneindolinones enabled by zwitterionic π-propargyl palladium species. Chemical Communications, 2021, 57, 4783-4786.	2.2	3

#	Article	IF	CITATIONS
451	Rapid Construction of Polysubstituted "Caged―Oxa-Bishomocubane Framework from Vinylidenecyclopropanes through a Sequential Dual Catalysis of Copper(I) and Visible-Light-Induced Photosensitization. Organic Chemistry Frontiers, 0, , .	2.3	3
452	Boron (III) Tribromide or Titanium (IV) Bromide and Lewis Base Promoted Baylisâ€Hillman Reaction. Chinese Journal of Chemistry, 2002, 20, 277-285.	2.6	2
453	Silver(I)â€Mediated Dual Cleavage of C–C and C–O Bonds in the Reaction of Diarylmethylenecyclopropanes with Tetrahydrofuran: Synthesis of 4â€(3â€Halobutâ€3â€enyloxy)butyl 2,2,2â€Trifluoroacetate Derivatives. European Journal of Organic Chemistry, 2014, 2014, 194-197.	1.2	2
454	Facile syntheses of N-heterocyclic carbene precursors through Cu(ii)- or Ag(i)-catalyzed amination of N-alkynyl formamidines. New Journal of Chemistry, 2017, 41, 1889-1892.	1.4	2
455	Gold(I)â€catalyzed Benzylation of (Hetero)aryl Boronic Acids with (Hetero)benzyl Bromides by the Strategy of a S _N 2â€type Reaction. Chemistry - an Asian Journal, 2018, 13, 2791-2795.	1.7	2
456	A highly efficient method for the construction of cyclopropane-containing dihydroindole derivatives from indolemethylenecyclopropanes with DIAD and DEAD. Organic and Biomolecular Chemistry, 2020, 18, 333-336.	1.5	2
457	Construction of α,αâ€disubstituted αâ€Amino Acid Derivatives via azaâ€Moritaâ€Baylisâ€Hillman Reactions of 2â€Aminoacrylates with Activated Olefins. ChemCatChem, 2020, 12, 1143-1147.	1.8	2
458	Phosphineâ€Catalyzed Substitution of Allenoates with Oxindoles: An Approach to 3â€Allenic or 3â€Dienoic Oxindoles. ChemistrySelect, 2021, 6, 9709-9713.	0.7	2
459	Goldâ€Catalyzed Intramolecular Tandem Cyclization of Alkynolâ€Tethered Alkylidenecyclopropanes to Construct Naphthaleneâ€Fused Eight―to Elevenâ€Membered Cyclic Ethers. Advanced Synthesis and Catalysis, 0, , .	2.1	2
460	Photolysis of oxygen saturated ethers in the presence of Sn(II) or Cu(II) salts. Chinese Journal of Chemistry, 2000, 18, 936-939.	2.6	1
461	A Facile Synthetic Method for the Preparation of sÌ€â€Symmetric (1, 2:4, 5)â€Diepoxypentane Equivalent. Chinese Journal of Chemistry, 2003, 21, 789-792.	2.6	1
462	LDAâ€Mediated Cascade Carbolithiation Reactions of Vinylidenecyclopropanes with Enones and ⟨i>N⟨/i>â€Sulfonated Imines as well as Nitroalkene and (Phenylmethylidene)malononitrile. European Journal of Organic Chemistry, 2012, 2012, 587-594.	1.2	1
463	Metalâ€Free Synthesis of Polysubstituted Imidazolinone Through Cyclization of Amidines with 2â€Substituted Acrylates. European Journal of Organic Chemistry, 2020, 2020, 1093-1099.	1.2	1
464	Cesium Carbonate Mediated Cyclization of Oxotryptamines with Allenoates: an Approach to Aza-Spiro[5.7]-cycloheptane Oxindole. Synlett, 0, 32, .	1.0	1
465	The crystallographic structure of a novel camphanic amide. Journal of Chemical Crystallography, 1999, 29, 1211-1213.	0.5	O
466	The crystal structure of dimethyl 4-methoxy-2,3,5,6-tetrachlorophenyl phosphate. Journal of Chemical Crystallography, 1999, 29, 497-499.	0.5	0
467	An interesting dihedral angle expansion in a series of monophosphoramides of (R)-(+)-1,1 $\hat{a}\in^2$ -binaphthyl-2-2 $\hat{a}\in^2$ -diamine. Journal of Chemical Research, 2001, 2001, 336-338.	0.6	O
468	The synthesis of new chiral rhodium complexes and their crystal structures. Applied Organometallic Chemistry, 2002, 16, 55-60.	1.7	0

#	Article	IF	CITATIONS
469	Mechanistic Insights into an Unexpected Carbon Dioxide Insertion Reaction through the Crystal Structures of Carbamic Diphenylthiophosphinic Anhydride and I-[(4-Nitrophenyl)-sulfonyl]-trans-2,5-pyrrolidinedicarboxylic Acid Methyl Ester. Chinese Journal of Chemistry, 2010, 19, 404-411.	2.6	0
470	Fluorination of Methylenecyclopropanes for Preparing Alkenyl Fluorides. , 2018, , 1-10.		O
471	Frontispiece: Recent Advances in the Cycloisomerizations of Methylenecyclopropanes using Gold Catalysis. Chemistry - A European Journal, 2018, 24, .	1.7	0
472	Frontispiece: The Construction of Molecular Complexity from Functionalized Alkylidenecyclopropanes (FACPs). Chemistry - A European Journal, 2019, 25, .	1.7	0
473	Direct Activation of a Remote C(sp 3)–H Bond Enabled by a Visibleâ€Light Photosensitized Allene Moiety. Angewandte Chemie, 2021, 133, 12160-12166.	1.6	0
474	Fluorination of Methylenecyclopropanes for Preparing Alkenyl Fluorides. , 2020, , 265-274.		0