Yu-Chao Hua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4189611/publications.pdf

Version: 2024-02-01

516710 552781 34 691 16 26 h-index citations g-index papers 34 34 34 413 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Irreversibility evaluation for transport processes revisited. International Journal of Heat and Mass Transfer, 2022, 189, 122699.	4.8	7
2	A two-sensor 3ï‰-2ï‰ method for thermal boundary resistance measurement. Journal of Applied Physics, 2021, 129, .	2.5	11
3	Reversible reciprocal relation of thermoelectricity. Physical Review E, 2021, 103, 012107.	2.1	6
4	Least action principles for irreversible transport processes. Chinese Science Bulletin, 2021, 66, 253-260.	0.7	1
5	A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems. Energies, 2021, 14, 8384.	3.1	11
6	Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips. International Journal of Heat and Mass Transfer, 2020, 160, 120230.	4.8	55
7	Study of phononic thermal transport across nanostructured interfaces using phonon Monte Carlo method. International Journal of Heat and Mass Transfer, 2020, 154, 119762.	4.8	16
8	Thermomass Theory in the Framework of GENERIC. Entropy, 2020, 22, 227.	2.2	6
9	Two Temperature Extension of Phonon Hydrodynamics. Journal of Non-Equilibrium Thermodynamics, 2020, 45, 291-304.	4.2	3
10	Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs. IEEE Transactions on Electron Devices, 2019, 66, 3296-3301.	3.0	48
11	An electrical thermometry platform for measuring cross-plane thermal conductivity of 2D flakes on substrate. Applied Physics Letters, 2019, 115, .	3.3	3
12	Interface-based two-way tuning of the in-plane thermal transport in nanofilms. Journal of Applied Physics, 2018, 123, .	2.5	15
13	Optimization of the one-dimensional transient heat conduction problems using extended entransy analyses. International Journal of Heat and Mass Transfer, 2018, 116, 166-172.	4.8	25
14	Reply to the Comments on: Tian Zhao et al. The Principle of Least Action for Reversible Thermodynamic Processes and Cycles. Entropy 2018, 20, 542. Entropy, 2018, 20, 986.	2.2	0
15	Microfabrication and Characterization of Parylene AF< inf>4., 2018, , .		1
16	Irreversibility and Action of the Heat Conduction Process. Entropy, 2018, 20, 206.	2.2	19
17	The Principle of Least Action for Reversible Thermodynamic Processes and Cycles. Entropy, 2018, 20, 542.	2.2	7
18	Comments on the statement that the temperature difference field uniformity principle is a duplicate of the principle, ΔT/T = const, for balanced counter-flow heat exchangers. International Journal of Heat and Mass Transfer, 2018, 127, 1343-1346.	4.8	3

#	Article	IF	CITATIONS
19	A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures. International Journal of Heat and Mass Transfer, 2018, 127, 1014-1022.	4.8	36
20	Anisotropic Heat Conduction in Two-Dimensional Periodic Silicon Nanoporous Films. Journal of Physical Chemistry C, 2017, 121, 5293-5301.	3.1	25
21	Transient thermal conduction optimization for solid sensible heat thermal energy storage modules by the Monte Carlo method. Energy, 2017, 133, 338-347.	8.8	21
22	An efficient two-step Monte Carlo method for heat conduction in nanostructures. Journal of Computational Physics, 2017, 342, 253-266.	3.8	23
23	Slip Boundary Conditions in Ballistic–Diffusive Heat Transport in Nanostructures. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 159-176.	2.6	46
24	The least action principle for heat conduction and its optimization application. International Journal of Heat and Mass Transfer, 2017, 105, 697-703.	4.8	18
25	Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111, 1401-1408.	6.0	34
26	Phonon wave propagation in ballistic-diffusive regime. Journal of Applied Physics, 2016, 119, .	2.5	23
27	Transient in-plane thermal transport in nanofilms with internal heating. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150811.	2.1	8
28	Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations. International Journal of Thermal Sciences, 2016, 109, 81-89.	4.9	34
29	Ballistic-diffusive heat conduction in multiply-constrained nanostructures. International Journal of Thermal Sciences, 2016, 101, 126-132.	4.9	57
30	The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source. International Journal of Heat and Mass Transfer, 2016, 92, 995-1003.	4.8	39
31	A model for phonon thermal conductivity of multi-constrained nanostructures. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 146501.	0.5	3
32	å¹¼¹é⁵扩散å⁻¹¼çƒçš"çƒè~æ~¡åž‹. Chinese Science Bulletin, 2015, 60, 2344-2348.	0.7	0
33	Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. International Journal of Heat and Mass Transfer, 2014, 78, 755-759.	4.8	73
34	Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 244401.	0.5	14