
Xian-Fei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4189328/publications.pdf Version: 2024-02-01

XIAN-FEI HUANC

#	Article	IF	CITATIONS
1	Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. Journal of Molecular Catalysis A, 2007, 261, 125-130.	4.8	61
2	Recent advances in the photocatalytic reduction of carbon dioxide. Environmental Chemistry Letters, 2016, 14, 99-112.	16.2	54
3	traffic flow prediction model based on deep belief network and genetic algorithm. IET Intelligent Transport Systems, 2018, 12, 533-541.	3.0	50
4	Environmentally friendly and efficient catalysis of cyclohexane oxidation by iron meso-tetrakis(pentafluorophenyl)porphyrin immobilized on zinc oxide. Applied Catalysis B: Environmental, 2015, 162, 364-371.	20.2	48
5	Immobilization of manganese tetraphenylporphyrin on boehmite and its catalysis for aerobic oxidation of cyclohexane. Applied Catalysis A: General, 2009, 358, 173-179.	4.3	41
6	Catalytic oxidation of toluene with molecular oxygen over manganese tetraphenylporphyrin supported on chitosan. Applied Catalysis A: General, 2008, 338, 83-86.	4.3	39
7	Oxidation of cyclohexane with a new catalyst (TPPFeIII)2O supported on chitosan. Journal of Molecular Catalysis A, 2007, 273, 144-148.	4.8	35
8	Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan. Applied Surface Science, 2017, 402, 436-443.	6.1	31
9	An efficient oxidation of toluene over Co(II)TPP supported on chitosan using air. Catalysis Letters, 2007, 114, 174-177.	2.6	30
10	Interesting Green Catalysis of Cyclohexane Oxidation over Metal Tetrakis(4-carboxyphenyl)porphyrins Promoted by Zinc Sulfide. Industrial & Engineering Chemistry Research, 2016, 55, 2959-2969.	3.7	30
11	A robust boehmite-supported cobalt tetraphenylporphyrin catalyst for aerobic oxidation of cyclohexane. Applied Catalysis A: General, 2009, 371, 161-165.	4.3	28
12	Selective oxidation of toluene over the new catalyst cobalt tetra (4-hydroxyl) phenylporphyrin supported on zinc oxide. Catalysis Communications, 2011, 12, 886-889.	3.3	22
13	Study on maximizing catalytic performance of cobalt(II) 5,10,15,20-tetrakis(4-pyridyl)porphyrin for cyclohexane oxidation. Journal of Industrial and Engineering Chemistry, 2019, 77, 135-145.	5.8	22
14	A zinc sulfide-supported iron tetrakis (4-carboxyl phenyl) porphyrin catalyst for aerobic oxidation of cyclohexane. RSC Advances, 2015, 5, 24788-24794.	3.6	20
15	Highly Active Catalysis of Cobalt Tetrakis(pentafluorophenyl)porphyrin Promoted by Chitosan for Cyclohexane Oxidation in Responseâ€Surfaceâ€Methodologyâ€Optimized Reaction Conditions. ChemistryOpen, 2019, 8, 104-113.	1.9	19
16	Catalysis of structure-like macromolecules supported manganese tetraphenylporphyrin for cyclohexane oxidation. Catalysis Communications, 2007, 8, 1183-1186.	3.3	18
17	Oxygen oxidation of ethylbenzene over manganese porphyrin is promoted by the axial nitrogen coordination in powdered chitosan. RSC Advances, 2016, 6, 48571-48579.	3.6	18
18	Effect of Mesoporous Chitosan Action and Coordination on the Catalytic Activity of Mesoporous Chitosan-Grafted Cobalt Tetrakis(p-Sulfophenyl)Porphyrin for Ethylbenzene Oxidation. Catalysts, 2018, 8, 199.	3.5	18

XIAN-FEI HUANG

#	Article	IF	CITATIONS
19	Highly selective oxidation of toluene using air over [Fe(III)TPP]Cl supported on chitosan. Canadian Journal of Chemistry, 2008, 86, 199-204.	1.1	17
20	Preparation and characterization of iron tetra (pentaflurophenyl)-porphyrin (TPFPP Fe) supported on boehmite (BM). Chemical Engineering Journal, 2012, 195-196, 165-172.	12.7	14
21	Use of a boehmite immobilized cobalt tetra(4-carboxyl)phenylporphyrin catalyst for the aerobic oxidation of cyclohexane to ketone and alcohol. Catalysis Communications, 2013, 32, 108-112.	3.3	14
22	Catalysis behavior of boehmite-supported iron tetraphenylporphyrins with nitro and methoxyl substituents for the aerobic oxidation of cyclohexane. Journal of Molecular Catalysis A, 2011, 340, 60-64.	4.8	13
23	Mesoporous chitosanâ€immobilized iron tetrakis(4â€carboxyphenyl)porphyrin as a model of cytochrome Pâ€450 enzyme for oxidation of ethylbenzene. Applied Organometallic Chemistry, 2018, 32, e4140.	3.5	12
24	Dependence of the intrinsic phase structure of Bi ₂ O ₃ catalysts on photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2021, 11, 2021-2025.	4.1	12
25	The influence of chitosan on the performances of mono and μ-oxo dimeric iron tetraphenylporphyrins catalysts for aerobic oxidation of toluene. Catalysis Communications, 2008, 9, 1882-1885.	3.3	11
26	Porous chitosan-supported metal tetra(4-carboxyphenyl)porphyrin as a practical model for the hydrophobic pocket/cavity of cytochrome P-450 enzyme. Materials Science and Engineering C, 2015, 49, 844-850.	7.3	11
27	A significant promotion of the iron tetra(<i>p</i> -methoxylphenyl) porphyrin catalysis for the aerobic oxidation of cyclohexane using boehmite. Journal of Experimental Nanoscience, 2013, 8, 640-648.	2.4	9
28	Practicably efficient ethylbenzene oxidation catalyzed by manganese tetrakis(4-sulfonatophenyl)porphyrin grafted to powdered chitosan. Journal of Porphyrins and Phthalocyanines, 2018, 22, 481-490.	0.8	4
29	How Did the Response Surface Methodology Optimized Reaction Conditions Influence and Enhance the Catalytic Performance of Nanoprous Chitosan Immobilized Cobalt Porphyrinate. IEEE Access, 2019, 7, 111429-111438.	4.2	4
30	Full use of factors promoting catalytic performance of chitosan supported manganese porphyrin. Scientific Reports, 2020, 10, 14132.	3.3	4
31	14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs. In Vitro Cellular and Developmental Biology - Animal, 2022, 58, 384-395.	1.5	3