
Justin R Seymour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4189138/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. Microbial Ecology, 2022, 83, 1073-1087.	1.4	8
2	Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environmental Microbiology, 2022, 24, 2449-2466.	1.8	6
3	Impacts of nursery-based propagation and out-planting on coral-associated bacterial communities. Coral Reefs, 2022, 41, 95-112.	0.9	6
4	Diatom Biogeography, Temporal Dynamics, and Links to Bacterioplankton across Seven Oceanographic Time-Series Sites Spanning the Australian Continent. Microorganisms, 2022, 10, 338.	1.6	5
5	Survival in a Sea of Gradients: Bacterial and Archaeal Foraging in a Heterogeneous Ocean. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 47-102.	0.2	1
6	Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton. ISME Communications, 2022, 2, .	1.7	6
7	Mucospheres produced by a mixotrophic protist impact ocean carbon cycling. Nature Communications, 2022, 13, 1301.	5.8	27
8	Can seagrass modify the effects of ocean acidification on oysters?. Marine Pollution Bulletin, 2022, 177, 113438.	2.3	7
9	Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature, 2022, 605, 132-138.	13.7	51
10	Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. Environmental Pollution, 2022, 307, 119456.	3.7	5
11	Molecular microbiological approaches reduce ambiguity about the sources of faecal pollution and identify microbial hazards within an urbanised coastal environment. Water Research, 2022, 218, 118534.	5.3	4
12	Spatial compositional turnover varies with trophic level and body size in marine assemblages of micro― and macroorganisms. Global Ecology and Biogeography, 2022, 31, 1556-1570.	2.7	2
13	Forecasting ocean microbiome shifts. Nature Microbiology, 2022, 7, 747-748.	5.9	1
14	Unlocking the phylogenetic diversity, primary habitats, and abundances of freeâ€living Symbiodiniaceae on a coral reef. Molecular Ecology, 2021, 30, 343-360.	2.0	33
15	Heat stress decreases the diversity, abundance and functional potential of coral gas emissions. Clobal Change Biology, 2021, 27, 879-891.	4.2	14
16	Temperate southern Australian coastal waters are characterised by surprisingly high rates of nitrogen fixation and diversity of diazotrophs. PeerJ, 2021, 9, e10809.	0.9	12
17	Climate change alters the haemolymph microbiome of oysters. Marine Pollution Bulletin, 2021, 164, 111991.	2.3	35
18	Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification. FEMS Microbiology Ecology, 2021, 97, .	1.3	18

#	Article	IF	CITATIONS
19	Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen. ISME Journal, 2021, 15, 3668-3682.	4.4	14
20	Occurrence and dynamics of potentially pathogenic vibrios in the wet-dry tropics of northern Australia. Marine Environmental Research, 2021, 169, 105405.	1.1	6
21	Pearl Oyster Bacterial Community Structure Is Governed by Location and Tissue-Type, but Vibrio Species Are Shared Among Oyster Tissues. Frontiers in Microbiology, 2021, 12, 723649.	1.5	6
22	Dynamics of the Sydney rock oyster microbiota before and during a QX disease event. Aquaculture, 2021, 541, 736821.	1.7	2
23	Microbiomes of an oyster are shaped by metabolism and environment. Scientific Reports, 2021, 11, 21112.	1.6	11
24	Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Communications, 2021, 1, .	1.7	10
25	Highly heterogeneous temporal dynamics in the abundance and diversity of the emerging pathogens Arcobacter at an urban beach. Water Research, 2020, 171, 115405.	5.3	11
26	Bacteria-mediated aggregation of the marine phytoplankton Thalassiosira weissflogii and Nannochloropsis oceanica. Journal of Applied Phycology, 2020, 32, 3735-3748.	1.5	12
27	Microbial tropicalization driven by a strengthening western ocean boundary current. Global Change Biology, 2020, 26, 5613-5629.	4.2	16
28	Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs, 2020, 39, 1703-1713.	0.9	23
29	The Volatilomes of Symbiodiniaceae-Associated Bacteria Are Influenced by Chemicals Derived From Their Algal Partner. Frontiers in Marine Science, 2020, 7, .	1.2	22
30	In Situ Chemotaxis Assay to Examine Microbial Behavior in Aquatic Ecosystems. Journal of Visualized Experiments, 2020, , .	0.2	10
31	Symbiodiniaceaeâ€bacteria interactions: rethinking metabolite exchange in reefâ€building corals as multiâ€partner metabolic networks. Environmental Microbiology, 2020, 22, 1675-1687.	1.8	89
32	Regional and oyster microenvironmental scale heterogeneity in the Pacific oyster bacterial community. FEMS Microbiology Ecology, 2020, 96, .	1.3	21
33	Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nature Communications, 2020, 11, 1942.	5.8	30
34	The Sydney rock oyster microbiota is influenced by location, season and genetics. Aquaculture, 2020, 527, 735472.	1.7	17
35	Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event. Microbial Ecology, 2019, 77, 736-747.	1.4	116
36	Characterisation of the Pacific Oyster Microbiome During a Summer Mortality Event. Microbial Ecology, 2019, 77, 502-512.	1.4	81

#	Article	IF	CITATIONS
37	A horizon scan of priorities for coastal marine microbiome research. Nature Ecology and Evolution, 2019, 3, 1509-1520.	3.4	77
38	Urban beaches are environmental hotspots for antibiotic resistance following rainfall. Water Research, 2019, 167, 115081.	5.3	37
39	Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Science of the Total Environment, 2019, 686, 264-275.	3.9	42
40	Mitigation of coldâ€water thermal pollution downstream of a large dam with the use of a novel thermal curtain. River Research and Applications, 2019, 35, 855-866.	0.7	14
41	Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Frontiers in Microbiology, 2019, 10, 1011.	1.5	53
42	The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology, 2019, 17, 284-294.	13.6	160
43	Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 μvar Disease. Frontiers in Microbiology, 2019, 10, 473.	1.5	59
44	Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate <i>Alexandrium minutum</i> during a simulated marine heatwave. Biogeosciences, 2019, 16, 4377-4391.	1.3	9
45	A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event. Frontiers in Microbiology, 2019, 10, 2907.	1.5	27
46	Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Scientific Reports, 2019, 9, 17395.	1.6	35
47	Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment. Marine Environmental Research, 2019, 143, 124-140.	1.1	92
48	A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (<i>Ca</i> .) Tj ETQq0 C) 0 _{4.9} BT /C)verlock 10 Tf 158
49	Seagrass rhizosphere microenvironment alters plantâ€essociated microbial community composition. Environmental Microbiology, 2018, 20, 2854-2864.	1.8	79
50	Defining the core microbiome of the symbiotic dinoflagellate, <i>Symbiodinium</i> . Environmental Microbiology Reports, 2018, 10, 7-11.	1.0	94
51	Quantifying Inorganic Nitrogen Assimilation by Synechococcus Using Bulk and Single-Cell Mass Spectrometry: A Comparative Study. Frontiers in Microbiology, 2018, 9, 2847.	1.5	6
52	Taxonomic and metabolic shifts in the Coorong bacterial metagenome driven by salinity and external inputs. Journal of Oceanology and Limnology, 2018, 36, 2033-2049.	0.6	4
53	Stormwater influences phytoplankton assemblages within the diverse, but impacted Sydney Harbour estuary. PLoS ONE, 2018, 13, e0209857.	1.1	12
54	The Microbiome of the Cosmopolitan Diatom Leptocylindrus Reveals Significant Spatial and Temporal Variability. Frontiers in Microbiology, 2018, 9, 2758.	1.5	35

#	Article	IF	CITATIONS
55	Microbial micropatches within microbial hotspots. PLoS ONE, 2018, 13, e0197224.	1.1	6
56	Chronic Rhinosinusitis: Potential Role of Microbial Dysbiosis and Recommendations for Sampling Sites. Frontiers in Cellular and Infection Microbiology, 2018, 8, 57.	1.8	75
57	Soft corals are significant DMSP producers in tropical and temperate reefs. Marine Biology, 2018, 165, 1.	0.7	18
58	Unicellular Cyanobacteria Are Important Components of Phytoplankton Communities in Australia's Northern Oceanic Ecoregions. Frontiers in Microbiology, 2018, 9, 3356.	1.5	12
59	Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Scientific Data, 2018, 5, 180130.	2.4	41
60	Swimming in the sea: chemotaxis by marine bacteria. Microbiology Australia, 2018, 39, 12.	0.1	4
61	Can we manage coastal ecosystems to sequester more blue carbon?. Frontiers in Ecology and the Environment, 2017, 15, 206-213.	1.9	195
62	Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology, 2017, 93, .	1.3	82
63	Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2017, 2, 17065.	5.9	727
64	Electricity and biomass production in a bacteria- Chlorella based microbial fuel cell treating wastewater. Journal of Power Sources, 2017, 356, 299-309.	4.0	66
65	Redefining the spongeâ€symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards hostâ€derived compounds. Environmental Microbiology Reports, 2017, 9, 750-755.	1.0	20
66	Microbial communities in marine sediments modify success of an invasive macrophyte. Scientific Reports, 2017, 7, 9845.	1.6	52
67	Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. Algal Research, 2017, 26, 302-311.	2.4	42
68	Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters. Frontiers in Microbiology, 2017, 8, 967.	1.5	23
69	A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nature Microbiology, 2017, 2, 1344-1349.	5.9	60
70	Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. ELife, 2017, 6, .	2.8	74
71	Unravelling the functional genetics of dinoflagellates: a review of approaches and opportunities. Perspectives in Phycology, 2016, 3, 37-52.	1.9	42
72	Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary. Frontiers in Microbiology, 2016, 7, 460.	1.5	69

#	Article	IF	CITATIONS
73	Editorial: Anthropogenic Impacts on the Microbial Ecology and Function of Aquatic Environments. Frontiers in Microbiology, 2016, 7, 1044.	1.5	39
74	Partitioning of fungal assemblages across different marine habitats. Environmental Microbiology Reports, 2016, 8, 235-238.	1.0	44
75	Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia. Environmental Microbiology, 2016, 18, 4485-4500.	1.8	16
76	Lotic bacterioplankton and phytoplankton community changes under dissolved organic-carbon amendment: evidence for competition for nutrients. Marine and Freshwater Research, 2016, 67, 1362.	0.7	11
77	Temperature-induced behavioral switches in a bacterial coral pathogen. ISME Journal, 2016, 10, 1363-1372.	4.4	54
78	High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation. ISME Journal, 2016, 10, 1499-1513.	4.4	55
79	Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current. PeerJ, 2016, 4, e1973.	0.9	35
80	Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ, 2016, 4, e2486.	0.9	64
81	River bacterioplankton community responses to a high inflow event. Aquatic Microbial Ecology, 2015, 75, 187-205.	0.9	23
82	Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in Microbiology, 2015, 6, 432.	1.5	142
83	Chemotaxis by natural populations of coral reef bacteria. ISME Journal, 2015, 9, 1764-1777.	4.4	60
84	Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151537.	1.2	102
85	Bacterioplankton Dynamics within a Large Anthropogenically Impacted Urban Estuary. Frontiers in Microbiology, 2015, 6, 1438.	1.5	98
86	Prokaryotic and diazotrophic population dynamics within a large oligotrophic inverse estuary. Aquatic Microbial Ecology, 2015, 74, 1-15.	0.9	33
87	Surface Immuno-Functionalisation for the Capture and Detection of Vibrio Species in the Marine Environment: A New Management Tool for Industrial Facilities. PLoS ONE, 2014, 9, e108387.	1.1	8
88	A sea of microbes: the diversity and activity of marine microorganisms. Microbiology Australia, 2014, 35, 183.	0.1	8
89	Variability in Bacteria and Virus‣ike Particle Abundances During Purging of Unconfined Aquifers. Ground Water, 2014, 52, 118-124.	0.7	18
90	Detachment and flow cytometric quantification of seagrass-associated bacteria. Journal of Microbiological Methods, 2014, 102, 23-25.	0.7	7

#	Article	IF	CITATIONS
91	Variability in Microbial Community Composition and Function Between Different Niches Within a Coral Reef. Microbial Ecology, 2014, 67, 540-552.	1.4	68
92	A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME Journal, 2014, 8, 999-1007.	4.4	180
93	Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Marine Mammal Science, 2014, 30, 888-904.	0.9	65
94	Confined aquifers as viral reservoirs. Environmental Microbiology Reports, 2013, 5, 725-730.	1.0	17
95	Diverse populations of lake water bacteria exhibit chemotaxis towards inorganic nutrients. ISME Journal, 2013, 7, 1661-1664.	4.4	44
96	The Role of Diatom Nanostructures in Biasing Diffusion to Improve Uptake in a Patchy Nutrient Environment. PLoS ONE, 2013, 8, e59548.	1.1	48
97	Spatially varying complexity of bacterial and virus-like particle communities within an aquifer system. Aquatic Microbial Ecology, 2013, 68, 259-266.	0.9	13
98	Ecology and Physics of Bacterial Chemotaxis in the Ocean. Microbiology and Molecular Biology Reviews, 2012, 76, 792-812.	2.9	230
99	Shifts in picophytoplankton community structure influenced by changing upwelling conditions. Estuarine, Coastal and Shelf Science, 2012, 109, 81-90.	0.9	20
100	Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences, 2012, 9, 815-825.	1.3	26
101	Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environmental Microbiology, 2012, 14, 240-253.	1.8	78
102	Bacterial and Virusâ€Like Particle Abundances in Purged and Unpurged Groundwater Depth Profiles. Ground Water Monitoring and Remediation, 2012, 32, 72-77.	0.6	27
103	Contrasting microbial assemblages in adjacent water masses associated with the <scp>E</scp> ast <scp>A</scp> ustralian <scp>C</scp> urrent. Environmental Microbiology Reports, 2012, 4, 548-555.	1.0	33
104	High Nutrient Transport and Cycling Potential Revealed in the Microbial Metagenome of Australian Sea Lion (Neophoca cinerea) Faeces. PLoS ONE, 2012, 7, e36478.	1.1	41
105	Microbial alignment in flow changes ocean light climate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3860-3864.	3.3	42
106	Influence of local physical events on picophytoplankton spatial and temporal dynamics in South Australian continental shelf waters. Journal of Plankton Research, 2011, 33, 1825-1841.	0.8	26
107	Substrate Type Determines Metagenomic Profiles from Diverse Chemical Habitats. PLoS ONE, 2011, 6, e25173.	1.1	26
108	Chemoattraction to Dimethylsulfoniopropionate Throughout the Marine Microbial Food Web. Science, 2010, 329, 342-345.	6.0	328

#	Article	IF	CITATIONS
109	Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3527-3531.	1.2	120
110	Role of microbial and phytoplanktonic communities in the control of seawater viscosity off East Antarctica (30-80° E). Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 877-886.	0.6	28
111	Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquatic Microbial Ecology, 2010, 59, 161-168.	0.9	65
112	Bacterial chemotaxis towards the extracellular products of the toxic phytoplankton Heterosigma akashiwo. Journal of Plankton Research, 2009, 31, 1557-1561.	0.8	33
113	Resource Patch Formation and Exploitation throughout the Marine Microbial Food Web. American Naturalist, 2009, 173, E15-E29.	1.0	71
114	Mesoscale and microscale spatial variability of bacteria and viruses during a Phaeocystis globosa bloom in the Eastern English Channel. Estuarine, Coastal and Shelf Science, 2008, 80, 589-597.	0.9	13
115	Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4209-4214.	3.3	348
116	A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches. Limnology and Oceanography: Methods, 2008, 6, 477-488.	1.0	44
117	Chemotactic Response of Marine Micro-Organisms to Micro-Scale Nutrient Layers. Journal of Visualized Experiments, 2007, , 203.	0.2	2
118	Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Estuarine, Coastal and Shelf Science, 2007, 73, 651-666.	0.9	36
119	Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Microbial Ecology, 2007, 50, 11-24.	0.9	58
120	Flow cytometric analysis of virus-like particles and heterotrophic bacteria within coral-associated reef water. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 563-566.	0.4	36
121	High-Resolution Fluorometer for Mapping Microscale Phytoplankton Distributions. Applied and Environmental Microbiology, 2006, 72, 4475-4478.	1.4	19
122	Spatial dynamics of virus-like particles and heterotrophic bacteria within a shallow coral reef system. Marine Ecology - Progress Series, 2005, 288, 1-8.	0.9	71
123	Microscale and small-scale temporal dynamics of a coastal planktonic microbial community. Marine Ecology - Progress Series, 2005, 300, 21-37.	0.9	37
124	Microscale heterogeneity in the activity of coastal bacterioplankton communities. Aquatic Microbial Ecology, 2004, 35, 1-16.	0.9	48
125	Geostatistical characterisation of centimetre-scale spatial structure of in vivo fluorescence. Marine Ecology - Progress Series, 2003, 251, 49-58.	0.9	37
126	Heterogeneity in bacterioplankton abundance from 4.5 millimetre resolution sampling. Aquatic Microbial Ecology, 2000, 22, 143-153.	0.9	66