
Rita Tamayo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188984/publications.pdf Version: 2024-02-01

Ριτη Ταμανο

#	Article	IF	CITATIONS
1	Roles of Cyclic Diguanylate in the Regulation of Bacterial Pathogenesis. Annual Review of Microbiology, 2007, 61, 131-148.	2.9	428
2	The EAL Domain Protein VieA Is a Cyclic Diguanylate Phosphodiesterase. Journal of Biological Chemistry, 2005, 280, 33324-33330.	1.6	253
3	Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile. Journal of Bacteriology, 2012, 194, 3307-3316.	1.0	221
4	The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO Journal, 2007, 26, 5153-5166.	3.5	200
5	PilZ Domain Proteins Bind Cyclic Diguanylate and Regulate Diverse Processes in Vibrio cholerae. Journal of Biological Chemistry, 2007, 282, 12860-12870.	1.6	171
6	Growth in a Biofilm Induces a Hyperinfectious Phenotype in <i>Vibrio cholerae</i> . Infection and Immunity, 2010, 78, 3560-3569.	1.0	171
7	Genes Induced Late in Infection Increase Fitness of Vibrio cholerae after Release into the Environment. Cell Host and Microbe, 2007, 2, 264-277.	5.1	168
8	Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile. Journal of Bacteriology, 2015, 197, 819-832.	1.0	161
9	The Second Messenger Cyclic Di-GMP Regulates Clostridium difficile Toxin Production by Controlling Expression of <i>sigD</i> . Journal of Bacteriology, 2013, 195, 5174-5185.	1.0	116
10	A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genetics, 2017, 13, e1006701.	1.5	103
11	Role of Cyclic Di-GMP during El Tor Biotype <i>Vibrio cholerae</i> Infection: Characterization of the In Vivo-Induced Cyclic Di-GMP Phosphodiesterase CdpA. Infection and Immunity, 2008, 76, 1617-1627.	1.0	96
12	A novel regulator controls <scp> <i>C</i> </scp> <i>lostridium difficile</i> sporulation, motility and toxin production. Molecular Microbiology, 2016, 100, 954-971.	1.2	90
13	Cyclic diguanylate riboswitches control bacterial pathogenesis mechanisms. PLoS Pathogens, 2019, 15, e1007529.	2.1	88
14	Type IV Pili Promote Clostridium difficile Adherence and Persistence in a Mouse Model of Infection. Infection and Immunity, 2018, 86, .	1.0	79
15	Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiology Reviews, 2016, 40, 753-773.	3.9	78
16	Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nature Microbiology, 2020, 5, 166-180.	5.9	75
17	Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile. Journal of Bacteriology, 2016, 198, 565-577.	1.0	74
18	A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infection and Immunity, 2017, 85, .	1.0	74

RITA TAMAYO

#	Article	IF	CITATIONS
19	An <i>in vitro</i> intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication, 2020, 12, 015006.	3.7	66
20	Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA. PLoS Computational Biology, 2015, 11, e1004126.	1.5	45
21	Phase variation of <i>Clostridium difficile </i> virulence factors. Gut Microbes, 2018, 9, 76-83.	4.3	43
22	Cyclic Diguanylate Regulates Virulence Factor Genes via Multiple Riboswitches in <i>Clostridium difficile</i> . MSphere, 2018, 3, .	1.3	43
23	The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome, 2021, 9, 31.	4.9	43
24	Adherent-Invasive Escherichia coli Production of Cellulose Influences Iron-Induced Bacterial Aggregation, Phagocytosis, and Induction of Colitis. Infection and Immunity, 2015, 83, 4068-4080.	1.0	41
25	Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genetics, 2018, 14, e1007332.	1.5	41
26	Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biology, 2019, 17, e3000379.	2.6	41
27	Two nucleotide second messengers regulate the production of the Vibrio cholerae colonization factor GbpA. BMC Microbiology, 2015, 15, 166.	1.3	40
28	The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae. PLoS ONE, 2016, 11, e0148478.	1.1	40
29	Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates. Journal of Bacteriology, 2018, 200, .	1.0	36
30	Enhancing bacterial survival through phenotypic heterogeneity. PLoS Pathogens, 2020, 16, e1008439.	2.1	36
31	Identification of genes induced in Vibrio cholerae in a dynamic biofilm system. International Journal of Medical Microbiology, 2014, 304, 749-763.	1.5	29
32	Site-Specific Recombination – How Simple DNA Inversions Produce Complex Phenotypic Heterogeneity in Bacterial Populations. Trends in Genetics, 2021, 37, 59-72.	2.9	29
33	The Vibrio cholerae Pst2 Phosphate Transport System Is Upregulated in Biofilms and Contributes to Biofilm-Induced Hyperinfectivity. Infection and Immunity, 2012, 80, 1794-1802.	1.0	28
34	Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile. PLoS Pathogens, 2020, 16, e1008708.	2.1	27
35	A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. BMC Microbiology, 2014, 14, 272.	1.3	21
36	Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. MSystems, 2021, 6, e0091921.	1.7	13

RITA TAMAYO

#	Article	IF	CITATIONS
37	c-di-GMP Inhibits Early Sporulation in Clostridioides difficile. MSphere, 2021, 6, e0091921.	1.3	11
38	Single cell analysis of nutrient regulation of Clostridioides (Clostridium) difficile motility. Anaerobe, 2019, 59, 205-211.	1.0	10
39	Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of <i>Clostridioides difficile</i> infection. Gut Microbes, 2022, 14, 2038854.	4.3	8
40	Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile. MBio, 2022, 13, e0296921.	1.8	6
41	Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile. PLoS Pathogens, 2022, 18, e1010677.	2.1	6
42	The Characterization of a Cyclic-Di-GMP (c-Di-GMP) Pathway Leads to a New Tool for Studying c-Di-GMP Metabolic Genes. Journal of Bacteriology, 2013, 195, 4779-4781.	1.0	2
43	Editorial overview: Bacterial cell regulation: from genes to complex environments. Current Opinion in Microbiology, 2018, 42, 110-114.	2.3	1
44	Conserved Virulence-Linked Metabolic Reprogramming in <i>Clostridioides Difficile</i> Identified Through Genome-Scale Metabolic Network Analysis. SSRN Electronic Journal, 0, , .	0.4	1
45	Role of Cyclic Di-GMP in Vibrio cholerae Virulence. , 2014, , 291-303.		Ο
46	Editorial overview: Gene regulation mechanisms governing Clostridioides difficile physiology and virulence. Current Opinion in Microbiology, 2022, 67, 102139.	2.3	0