
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188979/publications.pdf Version: 2024-02-01

YUDI V ROBDYSHEV

#	Article	IF	CITATIONS
1	CD68/macrosialin: not just a histochemical marker. Laboratory Investigation, 2017, 97, 4-13.	3.7	447
2	Macrophageâ€mediated cholesterol handling in atherosclerosis. Journal of Cellular and Molecular Medicine, 2016, 20, 17-28.	3.6	375
3	Mitochondrial Aging and Age-Related Dysfunction of Mitochondria. BioMed Research International, 2014, 2014, 1-7.	1.9	312
4	Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed Research International, 2016, 2016, 1-13.	1.9	252
5	Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on) Tj ETQq1 1 0.78	4314 rgBT 1.9	Overlock 10
6	The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology, 2018, 223, 101-111.	1.9	209
7	Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Frontiers in Physiology, 2015, 6, 365.	2.8	184
8	Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. European Heart Journal, 2005, 26, 1700-1704.	2.2	171
9	Ultrastructural Recognition of Cells with Dendritic Cell Morphology in Human Aortic Intima. Contacting Interactions of Vascular Dendritic Cells in Athero-resistant and Athero-prone Areas of the Normal Aorta Archives of Histology and Cytology, 1995, 58, 307-322.	0.2	164
10	The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology, 2016, 97, 47-55.	1.9	144
11	Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Research International, 2015, 2015, 1-18.	1.9	139
12	Cardiac Extracellular Vesicles in Normal and Infarcted Heart. International Journal of Molecular Sciences, 2016, 17, 63.	4.1	137
13	Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie, 2017, 132, 19-27.	2.6	107
14	Links between atherosclerotic and periodontal disease. Experimental and Molecular Pathology, 2016, 100, 220-235.	2.1	94
15	Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries <i>in situ</i> : implications for diffuse intimal calcification. Journal of Pathology, 2005, 205, 641-650.	4.5	90
16	Dendritic cells and their role in atherogenesis. Laboratory Investigation, 2010, 90, 970-984.	3.7	87
17	Expression of heat shock protein–70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. Journal of Vascular Surgery, 2002, 35, 368-375.	1.1	86
18	Changes in transcriptome of macrophages in atherosclerosis. Journal of Cellular and Molecular Medicine, 2015, 19, 1163-1173.	3.6	82

#	Article	IF	CITATIONS
19	Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Frontiers in Microbiology, 2015, 6, 671.	3.5	76
20	Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease. International Journal of Molecular Sciences, 2014, 15, 12807-12841.	4.1	74
21	Neovascular expression of VE-cadherin in human atherosclerotic arteries and its relation to intimal inflammation. Cardiovascular Research, 1999, 43, 1003-1017.	3.8	73
22	Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance. Frontiers in Microbiology, 2014, 5, 781.	3.5	66
23	ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Laboratory Investigation, 2016, 96, 708-718.	3.7	66
24	Role of Endoplasmic Reticulum Stress in Atherosclerosis and Diabetic Macrovascular Complications. BioMed Research International, 2014, 2014, 1-14.	1.9	63
25	Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Frontiers in Physiology, 2014, 5, 279.	2.8	61
26	Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology, 2015, 220, 833-844.	1.9	60
27	Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology, 2016, 221, 1014-1033.	1.9	53
28	Vascular Endothelium: Functioning in Norm, Changes in Atherosclerosis and Current Dietary Approaches to Improve Endothelial Function. Mini-Reviews in Medicinal Chemistry, 2015, 15, 338-350.	2.4	49
29	Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. International Journal of Cardiology, 2017, 227, 66-82.	1.7	48
30	The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovascular Research, 2014, 103, 438-451.	3.8	47
31	Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. Journal of Cardiology, 2015, 66, 271-278.	1.9	47
32	HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB Journal, 2014, 28, 2828-2839.	0.5	45
33	Neutrophil's weapons in atherosclerosis. Experimental and Molecular Pathology, 2015, 99, 663-671.	2.1	44
34	Novel Aberrations Uncovered in Barrett's Esophagus and Esophageal Adenocarcinoma Using Whole Transcriptome Sequencing. Molecular Cancer Research, 2017, 15, 1558-1569.	3.4	43
35	Quantitative Assessment of Heteroplasmy of Mitochondrial Genome: Perspectives in Diagnostics and Methodological Pitfalls. BioMed Research International, 2014, 2014, 1-9.	1.9	40
36	Low Density Lipoprotein-Containing Circulating Immune Complexes: Role in Atherosclerosis and Diagnostic Value. BioMed Research International, 2014, 2014, 1-7.	1.9	38

#	Article	IF	CITATIONS
37	Detection of Chlamydophila pneumoniae in dendritic cells in atherosclerotic lesions. Atherosclerosis, 2004, 173, 185-195.	0.8	35
38	Mechanisms of Medial Arterial Calcification in Diabetes. Current Pharmaceutical Design, 2014, 20, 5870-5883.	1.9	35
39	Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis, 2005, 180, 293-303.	0.8	34
40	Mosaicism of Mitochondrial Genetic Variation in Atherosclerotic Lesions of the Human Aorta. BioMed Research International, 2015, 2015, 1-9.	1.9	34
41	The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. International Journal of Cardiology, 2017, 245, 236-244.	1.7	33
42	The Malaysia DREEM: perceptions of medical students about the learning environment in a medical school in Malaysia. Advances in Medical Education and Practice, 2014, 5, 177.	1.5	32
43	Innervation of the arterial wall and its modification in atherosclerosis. Autonomic Neuroscience: Basic and Clinical, 2015, 193, 7-11.	2.8	32
44	Vascular stem/progenitor cells: current status of the problem. Cell and Tissue Research, 2015, 362, 1-7.	2.9	29
45	The phenomenon of atherosclerosis reversal and regression: Lessons from animal models. Experimental and Molecular Pathology, 2017, 102, 138-145.	2.1	29
46	Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Frontiers in Physiology, 2014, 5, 196.	2.8	28
47	Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?. Basic Research in Cardiology, 2007, 102, 133-143.	5.9	27
48	How do macrophages sense modified low-density lipoproteins?. International Journal of Cardiology, 2017, 230, 232-240.	1.7	27
49	LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vascular Health and Risk Management, 2015, 11, 525.	2.3	23
50	Anti-atherosclerotic effects of garlic preparation in freeze injury model of atherosclerosis in cholesterol-fed rabbits. Phytomedicine, 2016, 23, 1235-1239.	5.3	23
51	Dendritic Cells in Barrett's Esophagus and Esophageal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2009, 13, 44-53.	1.7	22
52	Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, С5178Ð ; G12315A, G13513 G14459A, G14846Еand G15059A in CHD patients with the history of myocardial infarction. Experimental and Molecular Pathology, 2016, 100, 87-91.	A, 2.1	20
53	Detection of Vascular Dendritic Cells and Extracellular Calcium-Binding Protein S-100 in Foci of Calcification in Human Arteries Acta Histochemica Et Cytochemica, 1995, 28, 371-380.	1.6	19
54	Development of Antiatherosclerotic Drugs on the basis of Natural Products Using Cell Model Approach. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	4.0	18

#	Article	IF	CITATIONS
55	Epigenetically Active Drugs Inhibiting DNA Methylation and Histone Deacetylation. Current Pharmaceutical Design, 2017, 23, 1167-1174.	1.9	18
56	Expression of GM3 synthase in human atherosclerotic lesions. Atherosclerosis, 2006, 184, 63-71.	0.8	17
57	Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue and Cell, 2016, 48, 25-34.	2.2	17
58	Macrophages and Their Contribution to the Development of Atherosclerosis. Results and Problems in Cell Differentiation, 2017, 62, 273-298.	0.7	17
59	Tumor Necrosis Factor-α and C-C Motif Chemokine Ligand 18 Associate with Atherosclerotic Lipid Accumulation In situ and In vitro. Current Pharmaceutical Design, 2018, 24, 2883-2889.	1.9	17
60	Dendritic Cell-Associated Immune Inflammation of Cardiac Mucosa: A Possible Factor in the Formation of Barrett's Esophagus. Journal of Gastrointestinal Surgery, 2009, 13, 442-450.	1.7	16
61	Changes of lysosomes in the earliest stages of the development of atherosclerosis. Journal of Cellular and Molecular Medicine, 2013, 17, 626-635.	3.6	16
62	Association of mutations in the mitochondrial genome with the subclinical carotid atherosclerosis in women. Experimental and Molecular Pathology, 2015, 99, 25-32.	2.1	13
63	Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta. Experimental and Molecular Pathology, 2015, 99, 1-6.	2.1	13
64	Association of mitochondrial mutations with the age of patients having atherosclerotic lesions. Experimental and Molecular Pathology, 2015, 99, 717-719.	2.1	11
65	Mutations of mitochondrial genome in carotid atherosclerosis. Frontiers in Genetics, 2015, 6, 111.	2.3	10
66	Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis. Data in Brief, 2016, 7, 1570-1575.	1.0	10
67	Epigenetic Alterations in DNA and Histone Modifications Caused by Depression and Antidepressant Drugs: Lessons from the Rodent Models. Current Pharmaceutical Design, 2018, 23, 6828-6840.	1.9	10
68	Chemokines and Relevant microRNAs in the Atherogenic Process. Mini-Reviews in Medicinal Chemistry, 2018, 18, 597-608.	2.4	10
69	Spatial distribution of osteoblast-specific transcription factor Cbfa1 and bone formation in atherosclerotic arteries. Cell and Tissue Research, 2008, 333, 225-235.	2.9	9
70	Musashi-1 expression in atherosclerotic arteries and its relevance to the origin of arterial smooth muscle cells: Histopathological findings and speculations. Atherosclerosis, 2011, 215, 355-365.	0.8	9
71	Structural alterations of the mucosa stroma in the Barrett's esophagus metaplasiaâ€dysplasiaâ€adenocarcinoma sequence. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 1498-1504.	2.8	9
72	MicroRNAs in Esophageal Adenocarcinoma: Functional Significance and Potential for the Development of New Molecular Disease Markers. Current Pharmaceutical Design, 2015, 21, 3402-3416.	1.9	9

#	Article	IF	CITATIONS
73	Amalgamation of Chlamydia pneumoniae inclusions with lipid droplets in foam cells in human atherosclerotic plaque. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 453, 69-77.	2.8	8
74	Heterogeneity of Tregs and the complexity in the IL-12 cytokine family signaling in driving T-cell immune responses in atherosclerotic vessels. Molecular Immunology, 2015, 65, 133-138.	2.2	8
75	Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles. Journal of Visualized Experiments, 2016, , .	0.3	8
76	Dendritic Cells in Colorectal Cancer and a Potential for their Use in Therapeutic Approaches. Current Pharmaceutical Design, 2016, 22, 2431-2438.	1.9	8
77	Decreased Expression of Liver X Receptor-α in Macrophages Infected with <i>Chlamydia pneumoniae</i> in Human Atherosclerotic Arteries in situ. Journal of Innate Immunity, 2011, 3, 483-494.	3.8	7
78	Dendritic Cells: A Double-Edge Sword in Atherosclerotic Inflammation. Current Pharmaceutical Design, 2015, 21, 1118-1123.	1.9	7
79	Expression of C1q Complement Component in Barrett's Esophagus and Esophageal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2010, 14, 1207-1213.	1.7	6
80	Dendritic Cells in Esophageal Adenocarcinoma: The Currently Available Information and Possibilities to use Dendritic Cells for Immunotherapeutic Approaches. Current Pharmaceutical Design, 2015, 22, 307-311.	1.9	6
81	An immunoregulatory role of dendritic cell-derived exosomes versus HIV-1 infection: take it easy but be warned. Annals of Translational Medicine, 2017, 5, 362-362.	1.7	5
82	Approaches to Improve Efficiency of Dendritic Cell-based Therapy of High Grade Gliomas. Current Pharmaceutical Design, 2016, 22, 5738-5751.	1.9	5
83	Engineered Nanoparticles: Their Properties and Putative Applications for Therapeutic Approaches Utilizing Stem Cells for the Repair of Atherosclerotic Disease. Current Drug Targets, 2018, 19, 1639-1648.	2.1	5
84	<i>Vascular dendritic cells</i> express intercellular adhesion molecule-1 in atherosclerotic plaques . Biomedical Research, 1997, 18, 179-182.	0.9	4
85	Gap Junctional Vesicles in Intimal Smooth Muscle Cells in Human Atherosclerotic Arteries. Ultrastructural Pathology, 1997, 21, 93-94.	0.9	1
86	The effect of maximal vs submaximal exertion on postprandial lipid levels in individuals with and without coronary heart disease. Journal of Clinical Lipidology, 2017, 11, 369-376.	1.5	1