Khanh B Vu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/418892/publications.pdf

Version: 2024-02-01

361413 377865 1,211 45 20 34 h-index citations g-index papers 47 47 47 1512 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Pt–Sn alloy phases and coke mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 catalysts for propane dehydrogenation. Applied Catalysis A: General, 2011, 400, 25-33.	4.3	112
2	Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst. ACS Catalysis, 2015, 5, 2529-2533.	11.2	79
3	Location and structure of coke generated over Pt–Sn/Al2O3 in propane dehydrogenation. Journal of Industrial and Engineering Chemistry, 2011, 17, 71-76.	5.8	71
4	Experimental and computational investigation on interaction mechanism of Rhodamine B adsorption and photodegradation by zeolite imidazole frameworks-8. Applied Surface Science, 2021, 538, 148065.	6.1	69
5	Propane dehydrogenation over Pt–Sn/Rare-earth-doped Al2O3: Influence of La, Ce, or Y on the formation and stability of Pt–Sn alloys. Catalysis Today, 2011, 164, 214-220.	4.4	66
6	Effective Estimation of Ligand-Binding Affinity Using Biased Sampling Method. ACS Omega, 2019, 4, 3887-3893.	3.5	52
7	Flexible and high-sensitivity sensor based on Ti3C2–MoS2 MXene composite for the detection of toxic gases. Chemosphere, 2022, 291, 133025.	8.2	52
8	Influence of Lanthanide Promoters on Ni/SBA-15 Catalysts for Syngas Production by Methane Dry Reforming. Procedia Engineering, 2016, 148, 1388-1395.	1.2	51
9	Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catalysis Today, 2017, 291, 67-75.	4.4	51
10	(Bio)Propylene production processes: A critical review. Journal of Environmental Chemical Engineering, 2021, 9, 105673.	6.7	44
11	Promotional Effect of Ce-dopant on Al2O3-supported Co Catalysts for Syngas Production via CO2 Reforming of Ethanol. Procedia Engineering, 2016, 148, 646-653.	1.2	41
12	Effect of Supports and Promoters on the Performance of Niâ€Based Catalysts inÂEthanol Steam Reforming. Chemical Engineering and Technology, 2020, 43, 672-688.	1.5	40
13	Stability evaluation of ethanol dry reforming on Lanthaniaâ€doped cobaltâ€based catalysts for hydrogenâ€rich syngas generation. International Journal of Energy Research, 2019, 43, 405-416.	4.5	39
14	Removal of the antibiotic tetracycline by Fe-impregnated SBA-15. Korean Journal of Chemical Engineering, 2010, 27, 116-120.	2.7	33
15	Adsorption of tetracycline on Laâ€impregnated MCMâ€41 materials. Environmental Technology (United) Tj ETQq1	1 1 0.7843 2.2	14 rgBT /O
16	Co ²⁺ substituted for Bi ³⁺ in BiVO ₄ and its enhanced photocatalytic activity under visible LED light irradiation. RSC Advances, 2019, 9, 23526-23534.	3.6	30
17	Oversampling Free Energy Perturbation Simulation in Determination of the Ligandâ€Binding Free Energy. Journal of Computational Chemistry, 2020, 41, 611-618.	3.3	30
18	Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations. RSC Advances, 2020, 10, 31991-31996.	3.6	30

#	Article	IF	CITATIONS
19	Prediction of AChE-ligand affinity using the umbrella sampling simulation. Journal of Molecular Graphics and Modelling, 2019, 93, 107441.	2.4	24
20	Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer. Organic Letters, 2015, 17, 4826-4829.	4.6	23
21	Polystyrene nanoparticles prepared by nanoprecipitation: A recyclable template for fabricating hollow silica. Journal of Industrial and Engineering Chemistry, 2021, 97, 307-315.	5.8	20
22	Oxidation of Coke Formed Over Pt-Al2O3 and Pt-SBA-15 in Propane Dehydrogenation. Catalysis Letters, 2009, 133, 376-381.	2.6	19
23	Influence of Oxygen Mobility over Supported Pt Catalysts on Combustion Temperature of Coke Generated in Propane Dehydrogenation. Catalysis Letters, 2011, 141, 699-704.	2.6	17
24	Clean and effective catalytic reduction of graphene oxide using atomic hydrogen spillover on Pt/ \hat{I}^3 -Al2O3 catalyst. Materials Letters, 2012, 86, 161-164.	2.6	17
25	The roles of CeyZr1â^'yO2 in propane dehydrogenation: Enhancing catalytic stability and decreasing coke combustion temperature. Applied Catalysis A: General, 2012, 443-444, 59-66.	4.3	17
26	One-Pot Synthesis of Au@SiO ₂ Catalysts: A Click Chemistry Approach. ACS Combinatorial Science, 2014, 16, 513-517.	3.8	16
27	How do magnetic, structural, and electronic criteria of aromaticity relate to HOMO – LUMO gap? An evaluation for graphene quantum dot and its derivatives. Chemical Physics, 2020, 539, 110951.	1.9	16
28	Electronic density enrichment of Pt catalysts by coke in the propane dehydrogenation. Korean Journal of Chemical Engineering, 2011, 28, 383-387.	2.7	15
29	Ring opening metathesis polymerization of cyclopentene using a ruthenium catalyst confined by a branched polymer architecture. Polymer Chemistry, 2016, 7, 2923-2928.	3.9	12
30	Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme. Chemical Physics Letters, 2018, 701, 65-71.	2.6	12
31	Gold@silica catalyst: Porosity of silica shells switches catalytic reactions. Chemical Physics Letters, 2019, 728, 80-86.	2.6	12
32	Conjugated polymers: A systematic investigation of their electronic and geometric properties using density functional theory and semi-empirical methods. Synthetic Metals, 2018, 246, 128-136.	3.9	11
33	Atomistic investigation of an lowa Amyloid- \hat{l}^2 trimer in aqueous solution. RSC Advances, 2018, 8, 41705-41712.	3.6	9
34	Fabrication of superhydrophobic surface using one-step chemical treatment. Surfaces and Interfaces, 2020, 21, 100673.	3.0	9
35	pH-Sensitive amphiphilic block-copolymers for transport and controlled release of oxygen. Polymer Chemistry, 2017, 8, 4322-4326.	3.9	8
36	cis-Cyclooctene epoxidation catalyzed by bulk metallophthalocyanines, metallohexadecafluorophthalocyanines and hollow silica-supported metallohexadecafluorophthalocyanine. Journal of Industrial and Engineering Chemistry, 2016, 40, 40-46.	5.8	7

3

#	Article	IF	Citations
37	The Effect of Tinâ€"Support Interaction on Catalytic Stability over Ptâ€"Sn/xAlâ€"SBA-15 Catalysts for Propane Dehydrogenation. Catalysis Letters, 2012, 142, 838-844.	2.6	6
38	Marine derivatives prevent <i>w</i> MUS81 <i>ii silico</i> studies. Royal Society Open Science, 2021, 8, 210974.	2.4	5
39	Structural and Energetic Impact of Nonâ€natural 7â€Deazaâ€8â€azaguanine, 7â€Deazaâ€8â€azaisoguanine, and 7â€Substituted Derivatives on Hydrogenâ€Bond Pairing with Cytosine and Isocytosine. ChemBioChem, 2019, 20, 2262-2270.	Their 2.6	4
40	Fine Tuning of the Copper Active Site in Polysaccharide Monooxygenases. Journal of Physical Chemistry B, 2020, 124, 1859-1865.	2.6	3
41	Structural investigations of halogen substituted 1,4-dihydropyridine derivatives: Crystallographic and computational studies. Journal of Molecular Structure, 2022, 1251, 132008.	3.6	2
42	Potential applications of waste lignin from the paper and pulp industry in Viet Nam. Science and Technology Development Journal, 2020, 23, 716-726.	0.1	2
43	Nanocapsules with fluorous filling: A "molecular zipper―approach. Journal of Polymer Science Part A, 2015, 53, 215-218.	2.3	1
44	Fractionation of lignin produced from the Earleaf Acacia tree by sequential industrial organic solvents. Science and Technology Development Journal, 2021, 24, 1835-1841.	0.1	1
45	Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water. ChemistrySelect, 2016, 1, 3306-3309.	1.5	O