Philipp A Greif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188729/publications.pdf Version: 2024-02-01

DHILIDD A CDELE

#	Article	IF	CITATIONS
1	Disease Modeling on Tumor Organoids Implicates AURKA as a Therapeutic Target in Liver Metastatic Colorectal Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 517-540.	4.5	11
2	Differential impact of <i>IDH1</i> / <i>2</i> mutational subclasses on outcome in adult AML: results from a large multicenter study. Blood Advances, 2022, 6, 1394-1405.	5.2	17
3	Genomics Driving Diagnosis and Treatment of Inborn Errors of Immunity with Cancer Predisposition. Journal of Allergy and Clinical Immunology: in Practice, 2022, , .	3.8	2
4	Specific effects of somatic GATA2 zinc finger mutations on erythroid differentiation. Experimental Hematology, 2022, 108, 26-35.	0.4	1
5	NGS-guided precision oncology in metastatic breast and gynecological cancer: first experiences at the CCC Munich LMU. Archives of Gynecology and Obstetrics, 2021, 303, 1331-1345.	1.7	11
6	DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Research, 2021, 31, 747-761.	5.5	20
7	Routine application of next-generation sequencing testing in uro-oncology—Are we ready for the next step of personalised medicine?. European Journal of Cancer, 2021, 146, 1-10.	2.8	5
8	Implementation of Precision Oncology for Patients with Metastatic Breast Cancer in an Interdisciplinary MTB Setting. Diagnostics, 2021, 11, 733.	2.6	13
9	Mutations in <scp><i>HID1</i></scp> Cause Syndromic Infantile Encephalopathy and Hypopituitarism. Annals of Neurology, 2021, 90, 143-158.	5.3	3
10	Fusion gene detection by RNA sequencing complements diagnostics of acute myeloid leukemia and identifies recurring NRIP1-MIR99AHG rearrangements. Haematologica, 2021, , .	3.5	13
11	A Clinically Applicable Gene Expression based Score predicts Resistance to Induction Treatment in Acute Myeloid Leukemia. Blood Advances, 2021, 5, 4752-4761.	5.2	Ο
12	An Inducible Leukemia-Associated Transcription Factor Facilitates Large-Scale Ex Vivo Generation of Functional Human Macrophages. Blood, 2021, 138, 2805-2805.	1.4	0
13	Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia, 2020, 34, 50-62.	7.2	56
14	GATA2 mutations in myeloid malignancies: Two zinc fingers in many pies. IUBMB Life, 2020, 72, 151-158.	3.4	11
15	The clinical mutatome of core binding factor leukemia. Leukemia, 2020, 34, 1553-1562.	7.2	60
16	ZBTB7A links tumor metabolism to myeloid differentiation. Experimental Hematology, 2020, 87, 20-24.e1.	0.4	2
17	Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion. International Journal of Molecular Sciences, 2020, 21, 2073.	4.1	19
18	ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene, 2020, 39, 3195-3205.	5.9	18

PHILIPP A GREIF

#	Article	IF	CITATIONS
19	Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia, 2020, 34, 3161-3172.	7.2	141
20	Molecular Subgroups of T Cell Acute Lymphoblastic Leukemia in Adults Treated According to GMALL Protocols. Blood, 2020, 136, 37-38.	1.4	4
21	Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion. Oncogene, 2019, 38, 261-272.	5.9	6
22	Allelic Imbalance of Recurrently Mutated Genes in Acute Myeloid Leukaemia. Scientific Reports, 2019, 9, 11796.	3.3	9
23	Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosomes and Cancer, 2019, 58, 839-849.	2.8	67
24	PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia. Leukemia, 2019, 33, 1895-1909.	7.2	46
25	DNA Methylation Profiling of AML Reveals Epigenetic Subgroups with Distinct Clinical Outcome. Blood, 2019, 134, 2715-2715.	1.4	6
26	A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica, 2018, 103, 456-465.	3.5	84
27	Evolution of Cytogenetically Normal Acute Myeloid Leukemia During Therapy and Relapse: An Exome Sequencing Study of 50 Patients. Clinical Cancer Research, 2018, 24, 1716-1726.	7.0	63
28	Relapse of acute myeloid leukemia after allogeneic stem cell transplantation is associated with gain of <i>WT1</i> alterations and high mutation load. Haematologica, 2018, 103, e581-e584.	3.5	14
29	Clonal heterogeneity of FLT3-ITD detected by high-throughput amplicon sequencing correlates with adverse prognosis in acute myeloid leukemia. Oncotarget, 2018, 9, 30128-30145.	1.8	33
30	GATA2 Zinc Finger Mutations Affect DNA-Binding and Promote Granulopoietic Differentiation. Blood, 2018, 132, 2779-2779.	1.4	0
31	Adults with Philadelphia chromosome–like acute lymphoblastic leukemia frequently have <i>IGH-CRLF2</i> and <i>JAK2</i> mutations, persistence of minimal residual disease and poor prognosis. Haematologica, 2017, 102, 130-138.	3.5	136
32	Controlled stem cell amplification by HOXB4 depends on its unique proline-rich region near the N terminus. Blood, 2017, 129, 319-323.	1.4	11
33	In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Modern Pathology, 2017, 30, 95-103.	5.5	84
34	Acute myeloid leukemia with del(9q) is characterized by frequent mutations of <i>NPM1</i> , <i>DNMT3A, WT1</i> and low expression of <i>TLE4</i> . Genes Chromosomes and Cancer, 2017, 56, 75-86.	2.8	15
35	Close correlation of copy number aberrations detected by nextâ€generation sequencing with results from routine cytogenetics in acute myeloid leukemia. Genes Chromosomes and Cancer, 2016, 55, 553-567.	2.8	12
36	Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood, 2016, 128, 686-698.	1.4	456

PHILIPP A GREIF

#	Article	IF	CITATIONS
37	ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nature Communications, 2016, 7, 11733.	12.8	45
38	Clones with and without Sensitivity Towards Treatment In Vivo Co-Exist within the Tumor Cells of a Single Patient with ALL. Blood, 2016, 128, 456-456.	1.4	5
39	Young woman with mild bone marrow dysplasia, GATA2 and ASXL1 mutation treated with allogeneic hematopoietic stem cell transplantation. Leukemia Research Reports, 2015, 4, 72-75.	0.4	10
40	Mutational spectrum of adult T-ALL. Oncotarget, 2015, 6, 2754-2766.	1.8	98
41	Genomic Profiling Reveals Gain of Mutations in Histone Methylation Regulators in Relapsed Adult B Cell Precursor ALL. Blood, 2015, 126, 2625-2625.	1.4	0
42	Functional Diversity of Single Stem Cell Clones in Patients' Acute Lymphoblastic Leukemia Growing in Mice: An Adverse Subclone with Distinct DNA-Methylation Pattern, Slow Growth In Vivo and Drug Resistance. Blood, 2015, 126, 3062-3062.	1.4	0
43	The NPM1 Mutation Type Has No Impact on Survival in Cytogenetically Normal AML. PLoS ONE, 2014, 9, e109759.	2.5	22
44	Isolated trisomy 13 defines a homogeneous AML subgroup with high frequency of mutations in spliceosome genes and poor prognosis. Blood, 2014, 124, 1304-1311.	1.4	81
45	The CATS (FAM64A) protein is a substrate of the Kinase Interacting Stathmin (KIS). Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1269-1279.	4.1	23
46	Applications and data analysis of next-generation sequencing. Laboratoriums Medizin, 2013, 37, .	0.6	3
47	Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. Blood, 2013, 122, 1761-1769.	1.4	48
48	Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood, 2013, 121, 4749-4752.	1.4	181
49	Mutational landscape of adult ETP-ALL. Oncotarget, 2013, 4, 954-955.	1.8	18
50	Unbalanced Translocation t(5;17) Resulting In a TP53 Loss As Recurrent Aberration In Myelodysplastic Syndrome With Complex Karyotype. Blood, 2013, 122, 4949-4949.	1.4	0
51	RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica, 2012, 97, 1909-1915.	3.5	82
52	GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood, 2012, 120, 395-403.	1.4	137
53	Up a lymphoid blind alley: Does CALM/AF10 disturb Ikaros during leukemogenesis?. World Journal of Biological Chemistry, 2011, 2, 115.	4.3	4
54	CBL Exon 8/9 Mutants Activate the FLT3 Pathway and Cluster in Core Binding Factor/11q Deletion Acute Myeloid Leukemia/Myelodysplastic Syndrome Subtypes. Clinical Cancer Research, 2009, 15, 2238-2247.	7.0	102

PHILIPP A GREIF

#	Article	IF	CITATIONS
55	Changes in chromatin phenotype predict the response to hormonal deprivation therapy in patients with prostate cancer. BJU International, 2009, 103, 391-398.	2.5	4
56	The CALM and CALM/AF10 interactor CATS is a marker for proliferation. Molecular Oncology, 2008, 2, 356-367.	4.6	36
57	Epigenetic events, remodelling enzymes and their relationship to chromatin organization in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. BJU International, 2007, 99, 908-915.	2.5	64
58	Interaction of the Leukemogenic CALM/AF10 Fusion Protein with the Hematopoietic Key Regulator Ikaros Blood, 2006, 108, 2365-2365.	1.4	0