
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4188227/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthetic polypeptide crotamine: characterization as a myotoxin and as a target of combinatorial peptides. Journal of Molecular Medicine, 2022, 100, 65-76.                    | 1.7 | 3         |
| 2  | Chemotherapy Triggers T Cells to Remodel the Extracellular Matrix and Promote Metastasis. Cancer Research, 2022, 82, 197-198.                                                  | 0.4 | 1         |
| 3  | Endothelial Prohibitin Mediates Bidirectional Long-Chain Fatty Acid Transport in White and Brown<br>Adipose Tissues. Diabetes, 2022, 71, 1400-1409.                            | 0.3 | 7         |
| 4  | Endothelial TrkA coordinates vascularization and innervation in thermogenic adipose tissue and can be targeted to control metabolism. Molecular Metabolism, 2022, 63, 101544.  | 3.0 | 7         |
| 5  | Body composition and breast cancer risk and treatment: mechanisms and impact. Breast Cancer Research and Treatment, 2021, 186, 273-283.                                        | 1.1 | 47        |
| 6  | Bad Cholesterol Uptake by CD36 in T-Cells Cripples Anti-Tumor Immune Response. Immunometabolism, 2021, 3, .                                                                    | 0.7 | 4         |
| 7  | Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. Npj Precision Oncology, 2021, 5, 26.                   | 2.3 | 15        |
| 8  | Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. Journal of Controlled Release, 2021, 333, 339-351.   | 4.8 | 28        |
| 9  | Cellular and physiological circadian mechanisms drive diurnal cell proliferation and expansion of white adipose tissue. Nature Communications, 2021, 12, 3482.                 | 5.8 | 18        |
| 10 | Prohibitin Inactivation in Adipocytes Results in Reduced Lipid Metabolism and Adaptive Thermogenesis<br>Impairment. Diabetes, 2021, 70, 2204-2212.                             | 0.3 | 13        |
| 11 | Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. JCI Insight, 2021, 6, .                         | 2.3 | 34        |
| 12 | Characterization of Peptides Targeting Metastatic Tumor Cells as Probes for Cancer Detection and Vehicles for Therapy Delivery. Cancer Research, 2021, 81, 5756-5764.          | 0.4 | 1         |
| 13 | Partial Ablation of Non-Myogenic Progenitor Cells as a Therapeutic Approach to Duchenne Muscular<br>Dystrophy. Biomolecules, 2021, 11, 1519.                                   | 1.8 | 3         |
| 14 | Ablation of Stromal Cells with a Targeted Proapoptotic Peptide Suppresses Cancer Chemotherapy<br>Resistance and Metastasis. Molecular Therapy - Oncolytics, 2020, 18, 579-586. | 2.0 | 13        |
| 15 | PAI-1-Dependent Inactivation of SMAD4-Modulated Junction and Adhesion Complex in Obese<br>Endometrial Cancer. Cell Reports, 2020, 33, 108253.                                  | 2.9 | 6         |
| 16 | Glycosaminoglycan Modification of Decorin Depends on MMP14 Activity and Regulates Collagen<br>Assembly. Cells, 2020, 9, 2646.                                                  | 1.8 | 11        |
| 17 | Age-associated telomere attrition in adipocyte progenitors predisposes to metabolic disease. Nature<br>Metabolism, 2020, 2, 1482-1497.                                         | 5.1 | 39        |
| 18 | Critical Role of Matrix Metalloproteinase 14 in Adipose Tissue Remodeling during Obesity. Molecular<br>and Cellular Biology, 2020, 40, .                                       | 1.1 | 56        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews<br>Cancer, 2020, 20, 174-186.                                                                                         | 12.8 | 2,012     |
| 20 | Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells, 2020, 9, 863.                                                                                                                   | 1.8  | 26        |
| 21 | The role of adipose stroma in prostate cancer aggressiveness. Translational Andrology and Urology, 2019, 8, S348-S350.                                                                                             | 0.6  | 8         |
| 22 | CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors. Stem Cells, 2019, 37, 1615-1628.                                        | 1.4  | 30        |
| 23 | HNF4α-Deficient Fatty Liver Provides a Permissive Environment for Sex-Independent Hepatocellular<br>Carcinoma. Cancer Research, 2019, 79, 5860-5873.                                                               | 0.4  | 23        |
| 24 | Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene, 2019, 38, 1979-1988.                                                                    | 2.6  | 63        |
| 25 | PDGFRα / PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development (Cambridge), 2018, 145, .                                                                 | 1.2  | 77        |
| 26 | Transient inflammatory signaling promotes beige adipogenesis. Science Signaling, 2018, 11, .                                                                                                                       | 1.6  | 18        |
| 27 | Three-Dimensional Magnetic Levitation Culture System Simulating White Adipose Tissue. Methods in<br>Molecular Biology, 2018, 1773, 147-154.                                                                        | 0.4  | 15        |
| 28 | Cancer as a Matter of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends in Cancer, 2018, 4, 374-384.                                                                                                    | 3.8  | 286       |
| 29 | Incompatibility of the circadian protein BMAL1 and HNF41 $\pm$ in hepatocellular carcinoma. Nature Communications, 2018, 9, 4349.                                                                                  | 5.8  | 76        |
| 30 | Transient Overexpression of Vascular Endothelial Growth Factor A in Adipose Tissue Promotes<br>Energy Expenditure via Activation of the Sympathetic Nervous System. Molecular and Cellular<br>Biology, 2018, 38, . | 1.1  | 31        |
| 31 | Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone. Cancer Research, 2017, 77, 3144-3150.                                                           | 0.4  | 31        |
| 32 | Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. Npj Precision Oncology, 2017, 1, .                        | 2.3  | 52        |
| 33 | Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells.<br>Stem Cells, 2017, 35, 1303-1315.                                                                                | 1.4  | 37        |
| 34 | Proinflammatory CXCL12–CXCR4/CXCR7 Signaling Axis Drives Myc-Induced Prostate Cancer in Obese<br>Mice. Cancer Research, 2017, 77, 5158-5168.                                                                       | 0.4  | 77        |
| 35 | Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.<br>Scientific Reports, 2017, 7, 4243.                                                                         | 1.6  | 38        |
| 36 | Non-glycanated Decorin Is a Drug Target on Human Adipose Stromal Cells. Molecular Therapy -<br>Oncolytics, 2017, 6, 1-9.                                                                                           | 2.0  | 24        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Divergent functions of endotrophin on different cell populations in adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E952-E963.                                             | 1.8 | 39        |
| 38 | Cytokine signaling regulating adipose stromal cell trafficking. Adipocyte, 2016, 5, 369-374.                                                                                                                         | 1.3 | 11        |
| 39 | Human and Mouse Brown Adipose Tissue Mitochondria Have Comparable UCP1 Function. Cell<br>Metabolism, 2016, 24, 246-255.                                                                                              | 7.2 | 93        |
| 40 | Proteolytic Isoforms of SPARC Induce Adipose Stromal Cell Mobilization in Obesity. Stem Cells, 2016, 34, 174-190.                                                                                                    | 1.4 | 24        |
| 41 | CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nature Communications, 2016, 7, 11674.                                                               | 5.8 | 118       |
| 42 | Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth. Molecular<br>Therapy, 2016, 24, 34-40.                                                                                          | 3.7 | 35        |
| 43 | Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue. JCl Insight, 2016, 1, .                                                                                                           | 2.3 | 51        |
| 44 | Neutrophil-Secreted Proteinase 3 Mediates Metastasis of Prostate Cancer Cells Expressing RAGE to the<br>Bone Marrow. Blood, 2016, 128, 1025-1025.                                                                    | 0.6 | 1         |
| 45 | Stromal Cells Derived from Visceral and Obese Adipose Tissue Promote Growth of Ovarian Cancers.<br>PLoS ONE, 2015, 10, e0136361.                                                                                     | 1.1 | 35        |
| 46 | PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA<br><i>PCA3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015,<br>112, 8403-8408. | 3.3 | 226       |
| 47 | Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death and Differentiation, 2015, 22, 351-363.                                              | 5.0 | 53        |
| 48 | How brown is brown fat that we can see?. Adipocyte, 2014, 3, 155-159.                                                                                                                                                | 1.3 | 5         |
| 49 | Obesity, proinflammatory mediators, adipose tissue progenitors, and breast cancer. Current Opinion in Oncology, 2014, 26, 545-550.                                                                                   | 1.1 | 15        |
| 50 | Depletion of white adipocyte progenitors suppresses obesity development (LB763). FASEB Journal, 2014,<br>28, LB763.                                                                                                  | 0.2 | 0         |
| 51 | A peptide probe for targeted brown adipose tissue imaging. Nature Communications, 2013, 4, 2472.                                                                                                                     | 5.8 | 55        |
| 52 | Semiparametric Bayesian Inference for Phage Display Data. Biometrics, 2013, 69, 174-183.                                                                                                                             | 0.8 | 6         |
| 53 | Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas. Stem Cell<br>Research, 2013, 11, 772-781.                                                                                    | 0.3 | 16        |
| 54 | Treatment of obesity as a potential complementary approach to cancer therapy. Drug Discovery Today, 2013, 18, 567-573.                                                                                               | 3.2 | 33        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Adipose Tissue Engineering in Three-Dimensional Levitation Tissue Culture System Based on Magnetic<br>Nanoparticles. Tissue Engineering - Part C: Methods, 2013, 19, 336-344.                                                       | 1.1 | 141       |
| 56 | Evaluation of Cell Function Upon Nanovector Internalization. Small, 2013, 9, 1696-1702.                                                                                                                                             | 5.2 | 17        |
| 57 | Role of Adipose Cells in Tumor Microenvironment. Studies in Mechanobiology, Tissue Engineering and<br>Biomaterials, 2013, , 271-294.                                                                                                | 0.7 | 3         |
| 58 | Human Omental-Derived Adipose Stem Cells Increase Ovarian Cancer Proliferation, Migration, and<br>Chemoresistance. PLoS ONE, 2013, 8, e81859.                                                                                       | 1.1 | 95        |
| 59 | Adipose Tissue-Derived Progenitor Cells and Cancer. , 2013, , 321-337.                                                                                                                                                              |     | Ο         |
| 60 | Vascular Targeting of Adipose Tissue. , 2013, , 381-400.                                                                                                                                                                            |     | 0         |
| 61 | Response to Comment on "A Peptidomimetic Targeting White Fat Causes Weight Loss and Improved<br>Insulin Resistance in Obese Monkeys― Science Translational Medicine, 2012, 4, .                                                     | 5.8 | 0         |
| 62 | Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1637-1642. | 3.3 | 111       |
| 63 | Stromal Progenitor Cells from Endogenous Adipose Tissue Contribute to Pericytes and Adipocytes That Populate the Tumor Microenvironment. Cancer Research, 2012, 72, 5198-5208.                                                      | 0.4 | 183       |
| 64 | Omental Adipose Tissue–Derived Stromal Cells Promote Vascularization and Growth of Endometrial<br>Tumors. Clinical Cancer Research, 2012, 18, 771-782.                                                                              | 3.2 | 151       |
| 65 | Adipose tissue cells, lipotransfer and cancer: A challenge for scientists, oncologists and surgeons.<br>Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 209-214.                                                      | 3.3 | 45        |
| 66 | Alternative origins of stroma in normal organs and disease. Stem Cell Research, 2012, 8, 312-323.                                                                                                                                   | 0.3 | 57        |
| 67 | Progenitor Cell Mobilization from Extramedullary Organs. Methods in Molecular Biology, 2012, 904, 243-252.                                                                                                                          | 0.4 | 12        |
| 68 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in<br>Neuroscience, 2011, 55, Unit 4.4.                                                                                                     | 2.6 | 20        |
| 69 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in Cell<br>Biology, 2011, 53, Unit 17.3                                                                                                     | 2.3 | 25        |
| 70 | An Isoform of Decorin Is a Resistin Receptor on the Surface of Adipose Progenitor Cells. Cell Stem<br>Cell, 2011, 9, 74-86.                                                                                                         | 5.2 | 178       |
| 71 | Vascular targeting of adipose tissue as an anti-obesity approach. Trends in Pharmacological Sciences, 2011, 32, 300-307.                                                                                                            | 4.0 | 68        |
| 72 | Influence of BMI on Level of Circulating Progenitor Cells. Obesity, 2011, 19, 1722-1726.                                                                                                                                            | 1.5 | 96        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Circulation of Progenitor Cells in Obese and Lean Colorectal Cancer Patients. Cancer Epidemiology<br>Biomarkers and Prevention, 2011, 20, 2461-2468.                                                                                    | 1.1  | 72        |
| 74 | A Peptidomimetic Targeting White Fat Causes Weight Loss and Improved Insulin Resistance in Obese<br>Monkeys. Science Translational Medicine, 2011, 3, 108ra112.                                                                         | 5.8  | 80        |
| 75 | Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients. Proceedings of the United States of America, 2011, 108, 18637-18642.                                                                             | 3.3  | 71        |
| 76 | Circulating Mesenchymal Stromal Cells As a New Prospective Cancer Marker,. Blood, 2011, 118, 3404-3404.                                                                                                                                 | 0.6  | 0         |
| 77 | Adipose tissue-derived progenitor cells and cancer. World Journal of Stem Cells, 2010, 2, 103.                                                                                                                                          | 1.3  | 78        |
| 78 | White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in<br>Mouse Models. Cancer Research, 2009, 69, 5259-5266.                                                                                | 0.4  | 294       |
| 79 | Combinatorial stem cell mobilization. Nature Biotechnology, 2009, 27, 252-253.                                                                                                                                                          | 9.4  | 39        |
| 80 | Tissue-Specific Targeting Based on Markers Expressed Outside Endothelial Cells. Advances in Genetics, 2009, 67, 61-102.                                                                                                                 | 0.8  | 9         |
| 81 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in Protein<br>Science, 2009, 57, Unit19.2.                                                                                                      | 2.8  | 8         |
| 82 | IFATS Collection: Combinatorial Peptides Identify α5β1 Integrin as a Receptor for the Matricellular<br>Protein SPARC on Adipose Stromal Cells. Stem Cells, 2008, 26, 2735-2745.                                                         | 1.4  | 70        |
| 83 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in Molecular<br>Biology, 2008, 82, Unit 20.1.                                                                                                   | 2.9  | 20        |
| 84 | A Population of Multipotent CD34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal<br>Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks.<br>Circulation Research, 2008, 102, 77-85. | 2.0  | 762       |
| 85 | A Ligand Peptide Motif Selected from a Cancer Patient Is a Receptor-Interacting Site within Human<br>Interleukin-11. PLoS ONE, 2008, 3, e3452.                                                                                          | 1.1  | 31        |
| 86 | Bayesian mixture models for complex high dimensional count data in phage display experiments.<br>Journal of the Royal Statistical Society Series C: Applied Statistics, 2007, 56, 139-152.                                              | 0.5  | 4         |
| 87 | Display technologies: Application for the discovery of drug and gene delivery agentsâ~†. Advanced Drug<br>Delivery Reviews, 2006, 58, 1622-1654.                                                                                        | 6.6  | 216       |
| 88 | Ligand-Directed Surface Profiling of Human Cancer Cells with Combinatorial Peptide Libraries. Cancer<br>Research, 2006, 66, 34-40.                                                                                                      | 0.4  | 77        |
| 89 | Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB Journal, 2006, 20, 979-981.                                                                                                               | 0.2  | 118       |
| 90 | Reversal of obesity by targeted ablation of adipose tissue. Nature Medicine, 2004, 10, 625-632.                                                                                                                                         | 15.2 | 523       |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Teratogenicity induced by targeting a placental immunoglobulin transporter. Proceedings of the<br>National Academy of Sciences of the United States of America, 2002, 99, 13055-13060. | 3.3  | 35        |
| 92 | Steps toward mapping the human vasculature by phage display. Nature Medicine, 2002, 8, 121-127.                                                                                        | 15.2 | 557       |
| 93 | Molecular addresses in blood vessels as targets for therapy. Current Opinion in Chemical Biology, 2001, 5, 308-313.                                                                    | 2.8  | 123       |
| 94 | [3] Interaction mating methods in two-hybrid systems. Methods in Enzymology, 2000, 328, 26-46.                                                                                         | 0.4  | 56        |
| 95 | A Role for Cyclin J in the Rapid Nuclear Division Cycles of Early Drosophila Embryogenesis.<br>Developmental Biology, 2000, 227, 661-672.                                              | 0.9  | 43        |
| 96 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in Cell<br>Biology, 2000, 8, Unit 17.3.                                                        | 2.3  | 11        |
| 97 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in Molecular<br>Biology, 1999, 46, Unit 20.1.                                                  | 2.9  | 11        |
| 98 | Interaction Trap/Twoâ€Hybrid System to Identify Interacting Proteins. Current Protocols in Protein<br>Science, 1998, 14, Unit19.2.                                                     | 2.8  | 9         |
| 99 | Targeting cyclin-dependent kinases in Drosophila with peptide aptamers. Proceedings of the National<br>Academy of Sciences of the United States of America, 1998, 95, 14266-14271      | 3.3  | 95        |