Fernando Herranz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cooperativity Between T Cell Receptor Complexes Revealed by Conformational Mutants of CD3É›. Science Signaling, 2009, 2, ra43.	1.6	90
2	Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. Journal of Physical Chemistry C, 2011, 115, 6257-6264.	1.5	83
3	Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Acta Biomaterialia, 2013, 9, 6421-6430.	4.1	79
4	Fast synthesis and bioconjugation of ⁶⁸ Ga coreâ€doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media and Molecular Imaging, 2016, 11, 203-210.	0.4	68
5	Design, Synthesis, Photophysics, and Anionâ€Binding Studies of Bis(dicyclohexylphosphino)methaneâ€Containing Dinuclear Gold(I) Thiolate Complexes with Urea Receptors. Chemistry - A European Journal, 2010, 16, 9123-9131.	1.7	47
6	Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging. Inorganics, 2020, 8, 28.	1.2	45
7	One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast. Langmuir, 2017, 33, 10239-10247.	1.6	43
8	The application of nanoparticles in gene therapy and magnetic resonance imaging. Microscopy Research and Technique, 2011, 74, 577-591.	1.2	40
9	Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology, 2016, 27, 255702.	1.3	40
10	Parallel Multifunctionalization of Nanoparticles: A One-Step Modular Approach for in Vivo Imaging. Bioconjugate Chemistry, 2015, 26, 153-160.	1.8	39
11	In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Scientific Reports, 2017, 7, 13242.	1.6	37
12	Family of Bioactive Heparin-Coated Iron Oxide Nanoparticles with Positive Contrast in Magnetic Resonance Imaging for Specific Biomedical Applications. Biomacromolecules, 2017, 18, 3156-3167.	2.6	37
13	Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging. ACS Omega, 2019, 4, 2719-2727.	1.6	35
14	A New Method for the Rapid Synthesis of Water Stable Superparamagnetic Nanoparticles. Chemistry - A European Journal, 2008, 14, 9126-9130.	1.7	32
15	Microwave-Driven Synthesis of Iron-Oxide Nanoparticles for Molecular Imaging. Molecules, 2019, 24, 1224.	1.7	29
16	Molecular Recognition:Â Improved Binding of Biotin Derivatives with Synthetic Receptors. Journal of Organic Chemistry, 2006, 71, 2944-2951.	1.7	28
17	A new method for the aqueous functionalization of superparamagnetic Fe ₂ O ₃ nanoparticles. Contrast Media and Molecular Imaging, 2008, 3, 215-222.	0.4	26
18	Phosphatidylcholineâ€Coated Iron Oxide Nanomicelles for In Vivo Prolonged Circulation Time with an Antibiofouling Protein Corona. Chemistry - A European Journal, 2014, 20, 16662-16671.	1.7	26

Fernando Herranz

#	Article	IF	CITATIONS
19	Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus, 2016, 6, 20160055.	1.5	26
20	Superparamagnetic Nanoparticles for Atherosclerosis Imaging. Nanomaterials, 2014, 4, 408-438.	1.9	25
21	Molecular recognition of biotin, barbital and tolbutamide with new synthetic receptors. Tetrahedron, 2005, 61, 5089-5100.	1.0	24
22	VSDMIP: virtual screening data management on an integrated platform. Journal of Computer-Aided Molecular Design, 2009, 23, 171-184.	1.3	22
23	T1-MRI Fluorescent Iron Oxide Nanoparticles by Microwave Assisted Synthesis. Nanomaterials, 2015, 5, 1880-1890.	1.9	21
24	The influence of cation incorporation and leaching in the properties of Mn-doped nanoparticles for biomedical applications. Journal of Colloid and Interface Science, 2020, 578, 510-521.	5.0	21
25	Towards the design of host–guest complexes: biotin and urea derivatives versus artificial receptors. Biosensors and Bioelectronics, 2004, 20, 1242-1249.	5.3	20
26	Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. Applied Sciences (Switzerland), 2018, 8, 1098.	1.3	18
27	Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 26-35.	1.7	18
28	Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Advances, 2015, 5, 1661-1665.	1.7	16
29	Magnetic Resonance Methods and Applications in Pharmaceutical Research. Journal of Pharmaceutical Sciences, 2008, 97, 3637-3665.	1.6	15
30	A theoretical and experimental NMR study of (+)-biotin methyl ester. Journal of Molecular Structure, 2009, 920, 323-326.	1.8	15
31	Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. Contrast Media and Molecular Imaging, 2017, 2017, 1-24.	0.4	15
32	Micellar Iron Oxide Nanoparticles Coated with Anti-Tumor Glycosides. Nanomaterials, 2018, 8, 567.	1.9	15
33	Surfaceâ€Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque. Chemistry - A European Journal, 2015, 21, 10450-10456.	1.7	13
34	Protein corona and phospholipase activity drive selective accumulation of nanomicelles in atherosclerotic plaques. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 643-650.	1.7	12
35	HAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis. ACS Applied Materials & amp; Interfaces, 2021, 13, 45279-45290.	4.0	12
36	Development and Application of Nanoparticles in Biomedical Imaging. Contrast Media and Molecular Imaging, 2018, 2018, 1-2.	0.4	11

Fernando Herranz

#	Article	IF	CITATIONS
37	Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. International Journal of Nanomedicine, 2021, Volume 16, 5923-5935.	3.3	10
38	Magnetic Mesoporous Silica Nanorods Loaded with Ceria and Functionalized with Fluorophores for Multimodal Imaging. ACS Applied Nano Materials, 2022, 5, 2113-2125.	2.4	10
39	Olefin metathesis for the functionalization of superparamagnetic nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 166-172.	0.7	9
40	Superparamagnetic iron oxide nanoparticles conjugated to a grass pollen allergen and an optical probe. Contrast Media and Molecular Imaging, 2012, 7, 435-439.	0.4	9
41	Doped-Iron Oxide Nanocrystals Synthesized by One-Step Aqueous Route for Multi-Imaging Purposes. Journal of Physical Chemistry C, 2019, 123, 7356-7365.	1.5	9
42	Thrombo-tag, an <i>in vivo</i> formed nanotracer for the detection of thrombi in mice by fast pre-targeted molecular imaging. Nanoscale, 2020, 12, 22978-22987.	2.8	9
43	Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A. Materials Science and Engineering C, 2022, 134, 112551.	3.8	9
44	A new tool for the rational design of methylbiotin hosts. Tetrahedron Letters, 2006, 47, 9017-9020.	0.7	8
45	Intramolecular interactions and photoinduced electron transfer in isoalloxazine-naphthalene bichromophores. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 166-176.	2.0	8
46	Host-Guest Chemistry of Tolbutamide. Molecules, 2006, 11, 478-485.	1.7	7
47	Tuning photoinduced processes of covalently bound isoalloxazine and anthraquinone bichromophores. Photochemical and Photobiological Sciences, 2013, 12, 813-822.	1.6	7
48	Assessment of regional pulmonary blood flow using 68Ga-DOTA PET. EJNMMI Research, 2017, 7, 7.	1.1	7
49	Highly Efficient T2 Cobalt Ferrite Nanoparticles Vectorized for Internalization in Cancer Cells. Pharmaceuticals, 2021, 14, 124.	1.7	7
50	Smartphoneâ€Based Colorimetric Method to Quantify Iron Concentration and to Determine the Nanoparticle Size from Suspensions of Magnetic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000032.	1.2	6
51	Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148332.	0.5	5
52	Quantitative assessment of myocardial blood flow and extracellular volume fraction using 68Ga-DOTA-PET: A feasibility and validation study in large animals. Journal of Nuclear Cardiology, 2020, 27, 1249-1260.	1.4	4
53	Covalent functionalization of magnetic nanoparticles for biomedical imaging. SPIE Newsroom, 0, ,	0.1	3
54	Synthesis of ⁶⁸ Ga Core-doped Iron Oxide Nanoparticles for Dual Positron Emission Tomography /(T ₁)Magnetic Resonance Imaging. Journal of Visualized Experiments, 2018, , .	0.2	3

#	Article	IF	CITATIONS
55	Iron Oxide Nanoparticle-Based MRI Contrast Agents: Characterization and In Vivo Use. , 2017, , 85-120.		2
56	Microwave-driven Synthesis of Iron Oxide Nanoparticles for Fast Detection of Atherosclerosis. Journal of Visualized Experiments, 2016, , .	0.2	1
57	Uniform Magnetite Nanoparticles Larger Than 20 nm Synthesized by an Aqueous Route. Springer Proceedings in Physics, 2012, , 379-379.	0.1	0