
Thi-Nga Do

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generalized Peierls substitution for the tight-binding model of twisted graphene systems in a magnetic field. Physical Review B, 2022, 105, .	1.1	6
2	Computational insights into structural, electronic, and optical properties of Janus GeSO monolayer. RSC Advances, 2021, 11, 28381-28387.	1.7	10
3	Multi-orbital tight binding model for the electronic and optical properties of armchair graphene nanoribbons in the presence of a periodic potential. Journal of Physics Condensed Matter, 2021, 33, 155702.	0.7	2
4	Influence of electric and magnetic fields and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ïƒ</mml:mi>-edge bands on the electronic and optical spectra of graphene nanoribbons. Physical Review B, 2021, 103, .</mml:math 	1.1	8
5	Effects of La and Ce doping on electronic structure and optical properties of janus MoSSe monolayer. Superlattices and Microstructures, 2021, 151, 106841.	1.4	6
6	Computational study on strain and electric field tunable electronic and optical properties of InTe monolayer. Superlattices and Microstructures, 2021, 151, 106816.	1.4	4
7	Atomistic Band-Structure Computation for Investigating Coulomb Dephasing and Impurity Scattering Rates of Electrons in Graphene. Nanomaterials, 2021, 11, 1194.	1.9	6
8	Controlling electronic and optical properties of zigzag graphene nanoribbons by a modulated electric field: significance of If bands. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2284.	0.9	1
9	Engineering plasmon modes and their loss in armchair graphene nanoribbons by selected edge-extended defects. Journal of Physics Condensed Matter, 2021, 33, 485001.	0.7	2
10	Role Played by Edge-Defects in the Optical Properties of Armchair Graphene Nanoribbons. Nanomaterials, 2021, 11, 3229.	1.9	2
11	Adjusting the electronic properties and contact types of graphene/F-diamane-like C ₄ F ₂ van der Waals heterostructure: a first principles study. RSC Advances, 2021, 11, 37981-37987.	1.7	2
12	Magneto-transport properties of B-, Si- and N-doped graphene. Carbon, 2020, 160, 211-218.	5.4	12
13	Electronic and optical properties of doped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113894.	1.3	20
14	Strain engineering of the electro-optical and photocatalytic properties of single-layered Janus MoSSe: First principles calculations. Optik, 2020, 224, 165503.	1.4	8
15	First principles study of structural, optoelectronic and photocatalytic properties of SnS, SnSe monolayers and their van der Waals heterostructure. Chemical Physics, 2020, 539, 110939.	0.9	18
16	Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study. RSC Advances, 2020, 10, 32027-32033.	1.7	18
17	Type-I band alignment of BX–ZnO (X = As, P) van der Waals heterostructures as high-efficiency water splitting photocatalysts: a first-principles study. RSC Advances, 2020, 10, 44545-44550.	1.7	25
18	Rich Magnetic Quantization Phenomena in AA Bilayer Silicene. Scientific Reports, 2019, 9, 14799.	1.6	10

Thi-Nga Do

#	Article	IF	CITATIONS
19	Valley- and spin-dependent quantum Hall states in bilayer silicene. Physical Review B, 2019, 100, .	1.1	17
20	Peculiar optical properties of bilayer silicene under the influence of external electric and magnetic fields. Scientific Reports, 2019, 9, 624.	1.6	18
21	Magneto-electronic and optical properties of Si-doped graphene. Carbon, 2019, 144, 608-614.	5.4	20
22	Electric-field-diversified optical properties of bilayer silicene. Optics Letters, 2019, 44, 4721.	1.7	12
23	Theoretical Models. , 2019, , 43-66.		Ο
24	Unusual Quantum Transport Properties. , 2019, , 207-248.		0
25	Future Perspectives and Open Issues. , 2019, , 309-326.		0
26	Topological Characterization of Landau Levels for 2D Massless Dirac Fermions in 3D Layered Systems. , 2019, , 273-296.		0
27	Stacking-Configuration-Modulated Bilayer Graphene. , 2019, , 101-130.		0
28	Experimental Measurements on Magnetic Quantization. , 2019, , 23-42.		0
29	AB-Bottom-Top Bilayer Silicene. , 2019, , 155-186.		Ο
30	Si-Doped Graphene Systems. , 2019, , 187-206.		0
31	AA-Bottom-Top Bilayer Silicene Systems. , 2019, , 131-154.		0
32	Twisted Bilayer Graphene Systems. , 2019, , 67-100.		0
33	Rich Magneto-Coulomb Excitations in Germanene. , 2019, , 249-272.		Ο
34	Diverse magnetic quantization in bilayer silicene. Physical Review B, 2018, 97, .	1.1	23
35	The diverse magneto-optical selection rules in bilayer black phosphorus. Scientific Reports, 2018, 8, 13303.	1.6	7
36	Coulomb scattering rates of excited states in monolayer electron-doped germanene. Physical Review B, 2018, 97, .	1.1	11

Thi-Nga Do

#	Article	IF	CITATIONS
37	Stacking-enriched magneto-transport properties of few-layer graphenes. Physical Chemistry Chemical Physics, 2017, 19, 29525-29533.	1.3	13
38	Rich magneto-absorption spectra of AAB-stacked trilayer graphene. Physical Chemistry Chemical Physics, 2016, 18, 17597-17605.	1.3	14
39	Magneto-optical properties of ABC-stacked trilayer graphene. Physical Chemistry Chemical Physics, 2015, 17, 15921-15927.	1.3	13
40	Configuration-enriched magneto-electronic spectra of AAB-stacked trilayer graphene. Carbon, 2015, 94, 619-632.	5.4	14
41	Polarizability and Impurity Screening for Phosphorene. , 0, , .		Ο
42	Strain engineering and electric field tunability of the electronic properties of a two-dimensional ZnGeN2 monolayer. New Journal of Chemistry, 0, , .	1.4	0