Wei-le Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187293/publications.pdf

Version: 2024-02-01

56	2,509	26	48
papers	citations	h-index	g-index
57	57	57	1461 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Rainfall-triggered debris flows following the Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 2009, 68, 187-194.	1.6	262
2	Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides, 2017, 14, 2129-2146.	2.7	231
3	Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides, 2020, 17, 1337-1352.	2.7	172
4	The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China. Natural Hazards and Earth System Sciences, 2012, 12, 201-216.	1.5	146
5	Successive landsliding and damming of the Jinsha River in eastern Tibet, China: prime investigation, early warning, and emergency response. Landslides, 2019, 16, 1003-1020.	2.7	145
6	Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides, 2017, 14, 705-718.	2.7	142
7	Post-earthquake landsliding and long-term impacts in the Wenchuan earthquake area, China. Engineering Geology, 2014, 182, 111-120.	2.9	129
8	Detection and segmentation of loess landslides via satellite images: a two-phase framework. Landslides, 2022, 19, 673-686.	2.7	94
9	Development and distribution of geohazards triggered by the 5.12 Wenchuan Earthquake in China. Science in China Series D: Earth Sciences, 2009, 52, 810-819.	0.9	90
10	Formation, distribution and risk control of landslides in China. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3, 97-116.	3.7	73
11	Spatial distribution of large-scale landslides induced by the 5.12 Wenchuan Earthquake. Journal of Mountain Science, 2011, 8, 246-260.	0.8	72
12	Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sensing, 2021, 13, 3662.	1.8	65
13	Landslides triggered by the 20 April 2013 Lushan earthquake, Sichuan Province, China. Engineering Geology, 2015, 187, 45-55.	2.9	61
14	Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event. Remote Sensing of Environment, 2020, 240, 111695.	4.6	57
15	Landslides triggered by the Ms 6.9 Nyingchi earthquake, China (18 November 2017): analysis of the spatial distribution and occurrence factors. Landslides, 2019, 16, 765-776.	2.7	55
16	Failure mechanisms and characteristics of the 2016 catastrophic rockslide at Su village, Lishui, China. Landslides, 2018, 15, 1391-1400.	2.7	45
17	Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science (Wuhan, China), 2021, 32, 1092-1103.	1.1	44
18	Co-seismic landslide inventory and susceptibility mapping in the 2008 Wenchuan earthquake disaster area, China. Journal of Mountain Science, 2013, 10, 339-354.	0.8	38

#	Article	IF	Citations
19	Post-disaster assessment of 2017 catastrophic Xinmo landslide (China) by spaceborne SAR interferometry. Landslides, 2019, 16, 1189-1199.	2.7	36
20	Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu Province, Northwest China. Landslides, 2021, 18, 251-265.	2.7	36
21	Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area. Natural Hazards and Earth System Sciences, 2017, 17, 833-844.	1.5	35
22	Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China. Landslides, 2016, 13, 1035-1047.	2.7	34
23	Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sensing, 2021, 13, 1157.	1.8	33
24	Loess Landslide Detection Using Object Detection Algorithms in Northwest China. Remote Sensing, 2022, 14, 1182.	1.8	31
25	Multitemporal UAV-based photogrammetry for landslide detection and monitoring in a large area: a case study in the Heifangtai terrace in the Loess Plateau of China. Journal of Mountain Science, 2020, 17, 1826-1839.	0.8	29
26	Early identification and dynamic processes of ridge-top rockslides: implications from the Su Village landslide in Suichang County, Zhejiang Province, China. Landslides, 2019, 16, 799-813.	2.7	28
27	More frequent glacier-rock avalanches in Sedongpu gully are blocking the Yarlung Zangbo River in eastern Tibet. Landslides, 2022, 19, 589-601.	2.7	28
28	Emergency response to the reactivated Aniangzhai landslide resulting from a rainstorm-triggered debris flow, Sichuan Province, China. Landslides, 2021, 18, 1115-1130.	2.7	24
29	Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science (Wuhan, China), 2021, 32, 1079-1091.	1.1	24
30	Mapping and Characterizing Displacements of Landslides with InSAR and Airborne LiDAR Technologies: A Case Study of Danba County, Southwest China. Remote Sensing, 2021, 13, 4234.	1.8	24
31	WebGIS-based information management system for landslides triggered by Wenchuan earthquake. Natural Hazards, 2013, 65, 1507-1517.	1.6	23
32	Rapid susceptibility mapping of co-seismic landslides triggered by the 2013 Lushan Earthquake using the regression model developed for the 2008 Wenchuan Earthquake. Journal of Mountain Science, 2013, 10, 699-715.	0.8	22
33	Deformation characteristics and failure mechanism of a reactivated landslide in Leidashi, Sichuan, China, on August 6, 2019: an emergency investigation report. Landslides, 2020, 17, 1405-1413.	2.7	22
34	The catastrophic landfill flowslide at Hongao dumpsite on 20ÂDecember 2015 in Shenzhen, China. Natural Hazards and Earth System Sciences, 2017, 17, 277-290.	1.5	19
35	Landslide Susceptibility Assessment Model Construction Using Typical Machine Learning for the Three Gorges Reservoir Area in China. Remote Sensing, 2022, 14, 2257.	1.8	19
36	Insights into the geohazards triggered by the 2017 Ms 6.9 Nyingchi earthquake in the east Himalayan syntaxis, China. Catena, 2021, 205, 105467.	2.2	18

#	Article	IF	CITATIONS
37	Decreasing Trend of Geohazards Induced by the 2008 Wenchuan Earthquake Inferred from Time Series NDVI Data. Remote Sensing, 2019, 11, 2192.	1.8	17
38	Monitoring the regional deformation of loess landslides on the Heifangtai terrace using the Sentinel-1 time series interferometry technique. Natural Hazards, 2019, 98, 485-505.	1.6	13
39	Historical Co-seismic Landslides Inventory and Analysis Using Google Earth: A Case Study of 1920 M8.5 Haiyuan Earthquake, China. , 2015, , 709-712.		8
40	MILL: Channel Attention–based Deep Multiple Instance Learning for Landslide Recognition. ACM Transactions on Multimedia Computing, Communications and Applications, 2021, 17, 1-11.	3.0	8
41	Effect of landslides on the structural characteristics of land-cover based on complex networks. International Journal of Modern Physics B, 2017, 31, 1750156.	1.0	7
42	Scaling relation of earthquake seismic data. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 2092-2102.	1.2	7
43	Seismic Landslide Evolution and Debris Flow Development: A Case Study in the Hongchun Catchment, Wenchuan Area of China., 2015,, 445-449.		6
44	3D Rock Structure Digital Characterization Using Airborne LiDAR and Unmanned Aerial Vehicle Techniques for Stability Analysis of a Blocky Rock Mass Slope. Remote Sensing, 2022, 14, 3044.	1.8	6
45	The long-term geologic hazards and consequent risk after the Wenchuan earthquake. , 2016, , 233-258.		5
46	The dynamics of Paiku Co lake area in response to climate change. Journal of Water and Climate Change, 2022, 13, 2725-2746.	1.2	5
47	A case study of landslide monitoring system for a transmission tower in Maoxian, Sichuan China. , 2017, , .		4
48	Topological and dynamic complexity of rock masses based on GIS and complex networks. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 1240-1248.	1.2	4
49	Secondary seismic fractures activated during the Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 2009, 68, 443-447.	1.6	3
50	An evaluation approach for segmentation results of high-resolution remote sensing images based on the degree distribution of land cover networks. International Journal of Modern Physics B, 2018, 32, 1850283.	1.0	1
51	Spatio-temporal network modelling and analysis of global strong earthquakes (Mw ≥ 6.0). Journal of the Geological Society, 2020, 177, 883-892.	0.9	1
52	Elevation-based and crustal thickness-based spatial statistical analysis of global strong earthquakes (Mw≥6.0). Physica A: Statistical Mechanics and Its Applications, 2021, 566, 125669.	1.2	1
53	Characteristics of Earthquakes in Mountain Areas and Post-earthquake Management., 2011,, 121-142.		1
54	Information Management System of Landslides Triggered by Wenchuan Earthquake on 12th May, 2008:Based on WebGIS and Database Technology. , 2010, , .		0

#	Article	IF	CITATIONS
55	Multi-Source Information Management System of Railway Geological Environment Based on GIS Technology. , 2010, , .		O
56	Co-seismic landslide detection using ALOS satellite image in the Mianyuan River Basin, China. , 2017, , .		0