
Venizelos Papayannopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology, 2018, 18, 134-147.	10.6	1,871
2	Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology, 2010, 191, 677-691.	2.3	1,637
3	Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science, 2015, 349, 316-320.	6.0	924
4	Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nature Immunology, 2014, 15, 1017-1025.	7.0	805
5	NETs: a new strategy for using old weapons. Trends in Immunology, 2009, 30, 513-521.	2.9	620
6	Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood, 2011, 117, 953-959.	0.6	612
7	Fringe modulates Notch–ligand interactions. Nature, 1997, 387, 908-912.	13.7	569
8	A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Reports, 2014, 8, 883-896.	2.9	556
9	MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells. Immunity, 2014, 41, 89-103.	6.6	456
10	Molecular mechanisms regulating NETosis in infection and disease. Seminars in Immunopathology, 2013, 35, 513-530.	2.8	261
11	Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nature Medicine, 2017, 23, 681-691.	15.2	260
12	Dorsal-Ventral Signaling in the Drosophila Eye. , 1998, 281, 2031-2034.		216
13	Neutrophil Elastase Enhances Sputum Solubilization in Cystic Fibrosis Patients Receiving DNase Therapy. PLoS ONE, 2011, 6, e28526.	1.1	199
14	Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet, The, 2020, 396, e6-e7.	6.3	196
15	Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nature Immunology, 2014, 15, 1116-1125.	7.0	187
16	A Polybasic Motif Allows N-WASP to Act as a Sensor of PIP2 Density. Molecular Cell, 2005, 17, 181-191.	4.5	177
17	Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity, 2017, 46, 421-432.	6.6	145
18	Histones, DNA, and Citrullination Promote Neutrophil Extracellular Trap Inflammation by Regulating the Localization and Activation of TLR4. Cell Reports, 2020, 31, 107602.	2.9	127

#	Article	IF	CITATIONS
19	<scp>LRRK</scp> 2 activation controls the repair of damaged endomembranes in macrophages. EMBO Journal, 2020, 39, e104494.	3.5	116
20	Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nature Communications, 2020, 11, 5566.	5.8	106
21	The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nature Immunology, 2021, 22, 140-153.	7.0	104
22	Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδT cells through induction of oxidative stress. PLoS Biology, 2018, 16, e2004990.	2.6	86
23	TRAIL ⁺ monocytes and monocyteâ€related cells cause lung damage and thereby increase susceptibility to influenza– <i> <scp>S</scp> treptococcus pneumoniae </i> coinfection. EMBO Reports, 2015, 16, 1203-1218.	2.0	82
24	IL-23–producing IL-10Rα–deficient gut macrophages elicit an IL-22–driven proinflammatory epithelial cell response. Science Immunology, 2019, 4, .	5.6	68
25	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	5.8	65
26	Human Erythroid Progenitors Are Directly Infected by SARS-CoV-2: Implications for Emerging Erythropoiesis in Severe COVID-19 Patients. Stem Cell Reports, 2021, 16, 428-436.	2.3	56
27	Hookworms Evade Host Immunity by Secreting a Deoxyribonuclease to Degrade Neutrophil Extracellular Traps. Cell Host and Microbe, 2020, 27, 277-289.e6.	5.1	53
28	Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6404-6409.	3.3	47
29	Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development. Stem Cell Reports, 2017, 9, 1377-1386.	2.3	39
30	A Reciprocal Interdependence between Nck and PI(4,5)P2 Promotes Localized N-WASp-Mediated Actin Polymerization in Living Cells. Molecular Cell, 2009, 36, 525-535.	4.5	38
31	Scalable and robust SARS-CoV-2 testing in an academic center. Nature Biotechnology, 2020, 38, 927-931.	9.4	32
32	Neutrophils Facing Biofilms: The Battle of the Barriers. Cell Host and Microbe, 2019, 25, 477-479.	5.1	23
33	The Roles of Neutrophils Linking Periodontitis and Atherosclerotic Cardiovascular Diseases. Frontiers in Immunology, 0, 13, .	2.2	19
34	Infection: Microbial Nucleases Turn Immune Cells Against Each Other. Current Biology, 2014, 24, R123-R125.	1.8	14
35	Sweet NETs, Bitter Wounds. Immunity, 2015, 43, 223-225.	6.6	11
36	Clinical outcomes of COVID-19 in long-term care facilities for people with epilepsy. Epilepsy and Behavior, 2021, 115, 107602.	0.9	11

#	Article	IF	CITATIONS
37	Neutrophils Stepping Through (to the Other Side). Immunity, 2018, 49, 992-994.	6.6	10
38	Actin powers the neutrophil traps. Blood, 2022, 139, 3104-3105.	0.6	3
39	Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Experimental Medicine, 2010, 207, i33-i33.	4.2	Ο
40	Human Erythroid Progenitors are Directly Infected by SARS-CoV-2: Implications for Hypoxia and Emerging Hematopoiesis/Erythropoiesis in COVID19. SSRN Electronic Journal, 0, , .	0.4	0