Samuel J Rowley-Neale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4187073/publications.pdf Version: 2024-02-01

		331670	361022
35	1,824 citations	21	35
papers	citations	h-index	g-index
35	35	35	2736
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D Printed Graphene Based Energy Storage Devices. Scientific Reports, 2017, 7, 42233.	3.3	345
2	An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 2018, 10, 218-226.	4.3	255
3	Fabrication of Graphene Oxide Supercapacitor Devices. ACS Applied Energy Materials, 2018, 1, 707-714.	5.1	138
4	Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open, 2021, 3, 100032.	3.7	130
5	2D nanosheet molybdenum disulphide (MoS ₂) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 2015, 7, 18152-18168.	5.6	104
6	Recent advances in portable heavy metal electrochemical sensing platforms. Environmental Science: Water Research and Technology, 2020, 6, 2676-2690.	2.4	99
7	2D molybdenum disulphide (2D-MoS ₂) modified electrodes explored towards the oxygen reduction reaction. Nanoscale, 2016, 8, 14767-14777.	5.6	83
8	Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustainable Energy and Fuels, 2020, 4, 302-311.	4.9	49
9	Mass-Producible 2D-MoS ₂ -Impregnated Screen-Printed Electrodes That Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 22539-22548.	8.0	47
10	Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Mikrochimica Acta, 2019, 186, 200.	5.0	46
11	Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. Chemosensors, 2020, 8, 5.	3.6	42
12	Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Analytical and Bioanalytical Chemistry, 2021, 413, 663-672.	3.7	41
13	Mass-producible 2D-MoSe ₂ bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustainable Energy and Fuels, 2017, 1, 74-83.	4.9	39
14	Facile synthesis of Ni/NiO nanocomposites: the effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Advances, 2021, 11, 14654-14664.	3.6	36
15	Niâ^'Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3Dâ€Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5633-5641.	3.4	32
16	Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO ₂ nanowire fabrication on edge plane sites reveals electrochemical insights. Nanoscale, 2016, 8, 15241-15251.	5.6	28
17	Carbon Nanodots as Electrocatalysts towards the Oxygen Reduction Reaction. Electroanalysis, 2018, 30, 436-444.	2.9	26
18	MoO ₂ Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms. Advanced Energy Materials, 2021, 11, 2100433.	19.5	25

#	Article	IF	CITATIONS
19	<i>In situ</i> addition of graphitic carbon into a NiCo ₂ O ₄ /CoO composite: enhanced catalysis toward the oxygen evolution reaction. RSC Advances, 2019, 9, 24995-25002.	3.6	24
20	Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction. Nanoscale, 2020, 12, 18214-18224.	5.6	23
21	Magnetron Sputter-Coated Nanoparticle MoS ₂ Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 7235-7242.	3.5	22
22	MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16069-16078.	7.1	21
23	Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 31380-31388.	7.1	21
24	Graphene Oxide Bulk-Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities. Biosensors, 2020, 10, 27.	4.7	21
25	Surfactant-exfoliated 2D molybdenum disulphide (2D-MoS ₂): the role of surfactant upon the hydrogen evolution reaction. RSC Advances, 2017, 7, 36208-36213.	3.6	19
26	Nitrogen doped nanoporous graphene: an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Advances, 2017, 7, 55555-55566.	3.6	15
27	Mass-producible 2D-WS ₂ bulk modified screen printed electrodes towards the hydrogen evolution reaction. RSC Advances, 2019, 9, 25003-25011.	3.6	13
28	Molybdenum Disulfide Surfaces to Reduce <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> Biofilm Formation. ACS Applied Materials & Interfaces, 2020, 12, 21057-21069.	8.0	13
29	Low-temperature synthesis of vertically aligned graphene through microwave-assisted chemical vapour deposition. Thin Solid Films, 2021, 733, 138801.	1.8	13
30	Enhancing the efficiency of the hydrogen evolution reaction utilising Fe ₃ P bulk modified screen-printed electrodes <i>via</i> the application of a magnetic field. RSC Advances, 2021, 11, 8073-8079.	3.6	12
31	A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs. Analyst, The, 2018, 143, 3360-3365.	3.5	11
32	Tailoring the electrochemical properties of 2D-hBN <i>via</i> physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2020, 2, 264-273.	4.6	11
33	Rapid antibiotic susceptibility testing using resazurin bulk modified screen-printed electrochemical sensing platforms. Analyst, The, 2021, 146, 5574-5583.	3.5	11
34	Glassy Carbon Electrode Modified with Layering of Carbon Black/Poly(Allylamine Hydrochloride) Composite for Multianalyte Determination. Electroanalysis, 2021, 33, 526-536.	2.9	8
35	2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions. Sensors, 2022, 22, 3330.	3.8	1