Jeanne Ropars

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186874/publications.pdf

Version: 2024-02-01

430874 610901 1,705 27 18 24 h-index citations g-index papers 35 35 35 2209 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont <i>Rhizophagus irregularis</i> . New Phytologist, 2018, 220, 1161-1171.	7.3	206
2	Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, 2014, 23, 753-773.	3.9	203
3	Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nature Communications, 2014, 5, 2876.	12.8	195
4	Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiology, 2016, 1, 16033.	13.3	137
5	Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nature Communications, 2018, 9, 2253.	12.8	131
6	A taxonomic and ecological overview of cheese fungi. International Journal of Food Microbiology, 2012, 155, 199-210.	4.7	110
7	Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. Current Biology, 2015, 25, 2562-2569.	3.9	110
8	Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evolutionary Applications, 2015, 8, 373-384.	3.1	59
9	Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Current Biology, 2020, 30, 4441-4453.e4.	3.9	58
10	Induction of sexual reproduction and genetic diversity in the cheese fungus <i><scp>P</scp>enicillium roqueforti</i> . Evolutionary Applications, 2014, 7, 433-441.	3.1	57
11	Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing. International Journal of Food Microbiology, 2010, 137, 204-213.	4.7	56
12	Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. ELife, 2018, 7, .	6.0	51
13	Insights into Penicillium roqueforti Morphological and Genetic Diversity. PLoS ONE, 2015, 10, e0129849.	2.5	46
14	Independent domestication events in the blue heese fungus <i>Penicillium roqueforti</i> Molecular Ecology, 2020, 29, 2639-2660.	3.9	45
15	Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti. PLoS ONE, 2012, 7, e49665.	2.5	40
16	Fungi as a Source of Food. Microbiology Spectrum, 2017, 5, .	3.0	31
17	Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti. PLoS ONE, 2017, 12, e0171387.	2.5	25
18	Fertility depression among cheeseâ€making Penicillium roqueforti strains suggests degeneration during domestication. Evolution; International Journal of Organic Evolution, 2016, 70, 2099-2109.	2.3	23

#	Article	IF	CITATIONS
19	Homokaryotic vs heterokaryotic mycelium in arbuscular mycorrhizal fungi: different techniques, different results?. New Phytologist, 2015, 208, 638-641.	7.3	20
20	Host Phenology and Geography as Drivers of Differentiation in Generalist Fungal Mycoparasites. PLoS ONE, 2015, 10, e0120703.	2.5	14
21	Diversity and Mechanisms of Genomic Adaptation in Penicillium. , 2016, , 27-42.		13
22	A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans. Nature Communications, 2020, 11, 6224.	12.8	10
23	<i>Brettanomyces bruxellensis</i> : Overview of the genetic and phenotypic diversity of an anthropized yeast. Molecular Ecology, 2023, 32, 2374-2395.	3.9	10
24	Fungi as a Source of Food., 0,, 1063-1085.		9
25	Massive gene swamping among cheese-making Penicillium fungi. Microbial Cell, 2014, 1, 107-109.	3.2	7
26	More Filtering on SNP Calling Does Not Remove Evidence of Inter-Nucleus Recombination in Dikaryotic Arbuscular Mycorrhizal Fungi. Frontiers in Plant Science, 2020, 11, 912.	3.6	6
27	Penicillium camemberti. , 2022, , 593-598.		3