Prashant Vikram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186721/publications.pdf Version: 2024-02-01

DDASHANT VIKDAM

#	Article	IF	CITATIONS
1	Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 2015, 66, 3477-3486.	2.4	356
2	qDTY 1.1 , a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics, 2011, 12, 89.	2.7	301
3	Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics, 2011, 12, 319.	1.2	199
4	A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics, 2015, 16, 216.	1.2	188
5	From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 2016, 242, 278-287.	1.7	182
6	Genomic Prediction of Gene Bank Wheat Landraces. G3: Genes, Genomes, Genetics, 2016, 6, 1819-1834.	0.8	159
7	Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought. PLoS ONE, 2013, 8, e62795.	1.1	156
8	Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 2015, 5, 14799.	1.6	145
9	qDTY12.1: a locus with a consistent effect on grain yield under drought in rice. BMC Genetics, 2013, 14, 12.	2.7	124
10	Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Research, 2012, 131, 88-96.	2.3	121
11	Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement. PLoS ONE, 2015, 10, e0132112.	1.1	113
12	Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Scientific Reports, 2018, 8, 12527.	1.6	113
13	Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities. Theoretical and Applied Genetics, 2012, 125, 155-169.	1.8	99
14	Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Functional and Integrative Genomics, 2012, 12, 447-464.	1.4	83
15	A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crops Research, 2013, 144, 281-287.	2.3	82
16	Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Scientific Reports, 2019, 9, 650.	1.6	79
17	Unlocking the genetic diversity of Creole wheats. Scientific Reports, 2016, 6, 23092.	1.6	75
18	Increased drought tolerance and wider adaptability of qDTY 12.1 conferred by its interaction with qDTY 2.3 and qDTY 3.2. Molecular Breeding, 2012, 30, 1767-1779.	1.0	68

PRASHANT VIKRAM

#	Article	IF	CITATIONS
19	Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Molecular Breeding, 2017, 37, 143.	1.0	65
20	Genetics of Fe, Zn, β-carotene, GPC and yield traits in bread wheat (Triticum aestivum L.) using multi-locus and multi-traits GWAS. Euphytica, 2018, 214, 1.	0.6	64
21	Bulk segregant analysis: "An effective approach for mapping consistent-effect drought grain yield QTLs in riceâ€: Field Crops Research, 2012, 134, 185-192.	2.3	63
22	Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Scientific Reports, 2016, 6, 27312.	1.6	62
23	Marker Assisted Breeding to Develop Multiple Stress Tolerant Varieties for Flood and Drought Prone Areas. Rice, 2019, 12, 8.	1.7	56
24	Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice. PLoS ONE, 2016, 11, e0151532.	1.1	55
25	GWAS to Identify Genetic Loci for Resistance to Yellow Rust in Wheat Pre-Breeding Lines Derived From Diverse Exotic Crosses. Frontiers in Plant Science, 2019, 10, 1390.	1.7	55
26	Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Scientific Reports, 2018, 8, 1626.	1.6	47
27	Molecular Markers Associated with Agro-Physiological Traits under Terminal Drought Conditions in Bread Wheat. International Journal of Molecular Sciences, 2020, 21, 3156.	1.8	37
28	Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. Frontiers in Plant Science, 2022, 13, 839704.	1.7	26
29	Genetic Diversity Analysis Reveals Importance of Green Revolution Gene (Sd1 Locus) for Drought Tolerance in Rice. Agricultural Research, 2016, 5, 1-12.	0.9	25
30	GWAS revealed a novel resistance locus on chromosome 4D for the quarantine disease Karnal bunt in diverse wheat pre-breeding germplasm. Scientific Reports, 2020, 10, 5999.	1.6	20
31	Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat (Triticum aestivum, L.). Frontiers in Plant Science, 2017, 8, 1913.	1.7	19
32	Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat. PLoS ONE, 2016, 11, e0151187.	1.1	18
33	Direct introgression of untapped diversity into elite wheat lines. Nature Food, 2021, 2, 819-827.	6.2	18
34	Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust. PLoS ONE, 2021, 16, e0246015.	1.1	14
35	Identification of Genomic Associations for Adult Plant Resistance in the Background of Popular South Asian Wheat Cultivar, PBW343. Frontiers in Plant Science, 2016, 7, 1674.	1.7	8
36	CIMMYT's Seeds of Discovery Initiative: Harnessing Biodiversity for Food Security and Sustainable Development. Indian Journal of Plant Genetic Resources, 2018, 31, 1.	0.1	8

PRASHANT VIKRAM

#	Article	IF	CITATIONS
37	Strategic use of Iranian bread wheat landrace accessions for genetic improvement: Core set formulation and validation. Plant Breeding, 2021, 140, 87-99.	1.0	8
38	Role of Biotechnology in Rice Production. , 2017, , 487-547.		7
39	Genetic diversity in Indian rice germplasm set using phenotypic and genotypic variables simultaneously. Indian Journal of Genetics and Plant Breeding, 2016, 76, 246.	0.2	3
40	Global Challenges and Urgency for Partnerships to Deploy Genetic Resources. Indian Journal of Plant Genetic Resources, 2016, 29, 351.	0.1	3
41	Genetic analysis revealed a quantitative trait loci (QTL2A.K) on short arm of chromosome 2A associated with yellow rust resistance in wheat (Triticum aestivum L.). Indian Journal of Genetics and Plant Breeding, 2020, 80, .	0.2	1
42	Practical Omics Approaches for Drought Tolerance in Rice. , 2013, , 47-72.		0