List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186703/publications.pdf Version: 2024-02-01

ANNE RADITED

#	Article	IF	CITATIONS
1	International initiative for a curated <i>SDHB</i> variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma. Journal of Medical Genetics, 2022, 59, 785-792.	1.5	5
2	Multiple endocrine neoplasia type 1 caused by mosaic mutation: clinical follow-up and genetic counseling?. European Journal of Endocrinology, 2022, 187, K1-K6.	1.9	3
3	Clinical lessons learned in constitutional hypopituitarism from two decades of experience in a large international cohort. Clinical Endocrinology, 2021, 94, 277-289.	1.2	22
4	Kinome rewiring during acquired drug resistance in neuroendocrine neoplasms. Endocrine-Related Cancer, 2021, 28, 39-51.	1.6	1
5	Characterization of the ability of a, second-generation SST-DA chimeric molecule, TBR-065, to suppress GH secretion from human GH-secreting adenoma cells. Pituitary, 2021, 24, 351-358.	1.6	7
6	Role of 3D volume growth rate for drug activity evaluation in meningioma clinical trials: the example of the CEVOREM study. Neuro-Oncology, 2021, 23, 1139-1147.	0.6	10
7	Somatotroph Tumors and the Epigenetic Status of the GNAS Locus. International Journal of Molecular Sciences, 2021, 22, 7570.	1.8	6
8	High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency. American Journal of Human Genetics, 2021, 108, 1526-1539.	2.6	23
9	Multiple Endocrine Neoplasia Type 1. Endocrinology, 2021, , 195-219.	0.1	0
10	Comparison of 68Ga-Dotatate PET/CT and 18F-FDOPA PET/CT for the diagnosis of pancreatic neuroendocrine tumors in a MEN1 patient. Annales D'Endocrinologie, 2020, 81, 39-43.	0.6	1
11	Brief CommunicationCirculating tumor DNA is present in the most aggressive meningiomas. Neuro-Oncology Advances, 2020, 2, vdaa068.	0.4	3
12	MEN2-related pheochromocytoma: current state of knowledge, specific characteristics in MEN2B, and perspectives. Endocrine, 2020, 69, 496-503.	1.1	21
13	Parasellar Meningiomas. Neuroendocrinology, 2020, 110, 780-796.	1.2	14
14	Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene, 2020, 39, 3367-3380.	2.6	28
15	Everolimus and Octreotide for Patients with Recurrent Meningioma: Results from the Phase II CEVOREM Trial. Clinical Cancer Research, 2020, 26, 552-557.	3.2	87
16	Germline mutations in the new E1' cryptic exon of the <i>VHL</i> gene in patients with tumours of von Hippel-Lindau disease spectrum or with paraganglioma. Journal of Medical Genetics, 2020, 57, 752-759.	1.5	12
17	Pheochromocytoma and Paraganglioma in Children and Adolescents: Experience of the French Society of Pediatric Oncology (SFCE). Journal of the Endocrine Society, 2020, 4, bvaa039.	0.1	21
18	Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: an international multicenter study. Endocrine Connections, 2020, 9, 489-497.	0.8	17

#	Article	IF	CITATIONS
19	Should the GCM2 gene be tested when screening for familial primary hyperparathyroidism?. European Journal of Endocrinology, 2020, 182, 57-65.	1.9	10
20	Germinal defects of SDHx genes in patients with isolated pituitary adenoma. European Journal of Endocrinology, 2020, 183, 369-379.	1.9	11
21	Acromegaly in Carney complex. Pituitary, 2019, 22, 456-466.	1.6	20
22	Tumor multifocality with vagus nerve involvement as a phenotypic marker of <i>SDHD</i> mutation in patients with head and neck paragangliomas: A ¹⁸ Fâ€FDOPA PET/CT study. Head and Neck, 2019, 41, 1565-1571.	0.9	4
23	UMD-MEN1 Database: An Overview of the 370 MEN1 Variants Present in 1676 Patients From the French Population. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 753-764.	1.8	39
24	Genetic analysis of adult Slovenian patients with combined pituitary hormone deficiency. Endocrine, 2019, 65, 379-385.	1.1	2
25	Clinical management of difficult to treat macroprolactinomas. Expert Review of Endocrinology and Metabolism, 2019, 14, 179-192.	1.2	6
26	Proposition of adjustments to the ACMGâ€AMP framework for the interpretation of <i>MEN1</i> missense variants. Human Mutation, 2019, 40, 661-674.	1.1	21
27	Using Digital Droplet Polymerase Chain Reaction to Detect the Mosaic GNAS Mutations in Whole Blood DNA or Circulating Cell-Free DNA in Fibrous Dysplasia and McCune-Albright Syndrome. Journal of Pediatrics, 2019, 205, 281-285.e4.	0.9	15
28	Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. European Journal of Human Genetics, 2019, 27, 216-225.	1.4	17
29	Metabolomics signatures of a subset of RET variants according to their oncogenic risk level. Endocrine-Related Cancer, 2019, 26, 379-389.	1.6	4
30	Multiple Endocrine Neoplasia Type 1. Endocrinology, 2019, , 1-26.	0.1	0
31	ALK-TPM3 rearrangement in adult renal cell carcinoma: Report of a new case showing loss of chromosome 3 and literature review. Cancer Genetics, 2018, 221, 31-37.	0.2	20
32	Unilateral aggressive pheochromocytoma revealed by a massive intraperitoneal hemorrhage five years after an initial presentation suggesting an adrenal hematoma. Annales D'Endocrinologie, 2018, 79, 48-52.	0.6	1
33	Looking beyond the thyroid: advances in the understanding of pheochromocytoma and hyperparathyroidism phenotypes in MEN2 and of non-MEN2 familial forms. Endocrine-Related Cancer, 2018, 25, T15-T28.	1.6	22
34	Negative Survival Impact of High Radiation Doses to Neural Stem Cells Niches in an IDH-Wild-Type Glioblastoma Population. Frontiers in Oncology, 2018, 8, 426.	1.3	10
35	Psychological impact of von Hippel-Lindau genetic screening in patients with a previous history of hemangioblastoma of the central nervous system. Journal of Psychosocial Oncology, 2018, 36, 624-634.	0.6	4
36	Functioning Mediastinal Paraganglioma Associated with a Germline Mutation of von Hippel-Lindau Gene. Journal of Clinical Medicine, 2018, 7, 116.	1.0	0

#	Article	IF	CITATIONS
37	Role of the tumor microenvironment in digestive neuroendocrine tumors. Endocrine-Related Cancer, 2018, 25, R519-R544.	1.6	13
38	Implications of SDHB genetic testing in patients with sporadic pheochromocytoma. Langenbeck's Archives of Surgery, 2017, 402, 787-798.	0.8	4
39	Paraganglioma of the organ of Zuckerkandl associated with a somatic HIF2α mutation: A case report. Oncology Letters, 2017, 13, 1083-1086.	0.8	4
40	Lessons from monogenic causes of growth hormone deficiency. Annales D'Endocrinologie, 2017, 78, 77-79.	0.6	6
41	Nouvelles approches théranostiques pour la prise en charge des méningiomes. Medecine Nucleaire, 2017, 41, 237-238.	0.2	0
42	Octreotide therapy in meningiomas: in vitro study, clinical correlation, and literature review. Journal of Neurosurgery, 2017, 127, 660-669.	0.9	45
43	Nationwide French Study of <i>RET</i> Variants Detected from 2003 to 2013 Suggests a Possible Influence of Polymorphisms as Modifiers. Thyroid, 2017, 27, 1511-1522.	2.4	32
44	Pathological and Genetic Characterization of Bilateral Adrenomedullary Hyperplasia in a Patient with Germline MAX Mutation. Endocrine Pathology, 2017, 28, 302-307.	5.2	25
45	MNGI-13. FINAL ANALYSIS OF PHASE II COMBINING EVEROLIMUS AND OCTREOTIDE FOR PATIENTS WITH REFRACTORY AND DOCUMENTED PROGRESSIVE MENINGIOMA (CEVOREM). Neuro-Oncology, 2017, 19, vi134-vi135.	0.6	0
46	Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs?. Oncotarget, 2017, 8, 41044-41063.	0.8	24
47	Pasireotide is more effective than octreotide, alone or combined with everolimus on human meningioma in vitro. Oncotarget, 2017, 8, 55361-55373.	0.8	16
48	Combining Cadherin Expression with Molecular Markers Discriminates Invasiveness in <scp>Growth</scp> Hormone and <scp>Prolactin</scp> Pituitary Adenomas. Journal of Neuroendocrinology, 2016, 28, 12352.	1.2	32
49	MECHANISMS IN ENDOCRINOLOGY: An update in the genetic aetiologies of combined pituitary hormone deficiency. European Journal of Endocrinology, 2016, 174, R239-R247.	1.9	49
50	GPR101 Mutations are not a Frequent Cause of Congenital Isolated Growth Hormone Deficiency. Hormone and Metabolic Research, 2016, 48, 389-393.	0.7	18
51	From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. European Journal of Endocrinology, 2016, 175, P1-P17.	1.9	117
52	In vitro impact of pegvisomant on growth hormone-secreting pituitary adenoma cells. Endocrine-Related Cancer, 2016, 23, 509-519.	1.6	10
53	GHRH excess and blockade in X-LAG syndrome. Endocrine-Related Cancer, 2016, 23, 161-170.	1.6	55
54	Somatic gain-of-function HIF2A mutations in sporadic central nervous system hemangioblastomas. Journal of Neuro-Oncology, 2016, 126, 473-481.	1.4	18

#	Article	IF	CITATIONS
55	Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocrine-Related Cancer, 2016, 23, 221-233.	1.6	75
56	Prospective comparison of 68Ga-DOTATATE and 18F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1248-1257.	3.3	96
57	Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis. PLoS ONE, 2015, 10, e0120010.	1.1	2
58	Combined treatment by octreotide and everolimus: Octreotide enhances inhibitory effect of everolimus in aggressive meningiomas. Journal of Neuro-Oncology, 2015, 124, 33-43.	1.4	40
59	Metabolome Profiling by HRMAS NMR Spectroscopy of Pheochromocytomas and Paragangliomas Detects SDH Deficiency: Clinical and Pathophysiological Implications. Neoplasia, 2015, 17, 55-65.	2.3	60
60	Medical therapies in pituitary adenomas: Current rationale for the use and future perspectives. Annales D'Endocrinologie, 2015, 76, 43-58.	0.6	17
61	Heterogeneous Genetic Background of the Association of Pheochromocytoma/Paraganglioma and Pituitary Adenoma: Results From a Large Patient Cohort. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E531-E541.	1.8	145
62	Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocrine-Related Cancer, 2015, 22, 745-757.	1.6	155
63	Case Report of <i>GNAS</i> Epigenetic Defect Revealed by a Congenital Hypothyroidism. Pediatrics, 2015, 135, e1079-e1083.	1.0	25
64	Copy number variations alter methylation and parallel IGF2 overexpression in adrenal tumors. Endocrine-Related Cancer, 2015, 22, 953-967.	1.6	21
65	Unraveling the intrafamilial correlations and heritability of tumor types in MEN1: a Groupe d'étude des Tumeurs Endocrines study. European Journal of Endocrinology, 2015, 173, 819-826.	1.9	29
66	European guidance for the molecular diagnosis of pseudohypoparathyroidism not caused by point genetic variants at GNAS: an EQA study. European Journal of Human Genetics, 2015, 23, 438-444.	1.4	27
67	Combined pituitary hormone deficiency: current and future status. Journal of Endocrinological Investigation, 2015, 38, 1-12.	1.8	37
68	Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue. PLoS ONE, 2015, 10, e0126648.	1.1	15
69	A MEN1 syndrome with a paraganglioma. European Journal of Human Genetics, 2014, 22, 283-285.	1.4	23
70	Gigantism and Acromegaly Due to Xq26 Microduplications and <i>GPR101</i> Mutation. New England Journal of Medicine, 2014, 371, 2363-2374.	13.9	292
71	Ghrelin Receptor (GHS-R1a) and Its Constitutive Activity in Somatotroph Adenomas: A New Co-targeting Therapy Using GHS-R1a Inverse Agonists and Somatostatin Analogs. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2463-E2471.	1.8	5
72	¹⁸ Fâ€ <scp>FDG PET</scp> / <scp>CT</scp> as a predictor of hereditary head and neck paragangliomas. European Journal of Clinical Investigation, 2014, 44, 325-332.	1.7	30

#	Article	IF	CITATIONS
73	In Vivo and In Vitro Evidence of Somatostatin Receptors Expression in a Dedifferentiated Retroperitoneal Liposarcoma. Clinical Nuclear Medicine, 2014, 39, 892-893.	0.7	2
74	Neuroendocrine tumors: insights into innovative therapeutic options and rational development of targeted therapies. Drug Discovery Today, 2014, 19, 458-468.	3.2	31
75	Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures. Endocrine-Related Cancer, 2014, 21, 691-704.	1.6	53
76	McCune-Albright Syndrome: A Detailed Pathological and Genetic Analysis of Disease Effects in an Adult Patient. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2029-E2038.	1.8	55
77	Frequent Large Germline <i>HRPT2</i> Deletions in a French National Cohort of Patients With Primary Hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E403-E408.	1.8	107
78	Simultaneous Hyper- and Hypomethylation at Imprinted Loci in a Subset of Patients with <i>GNAS</i> Epimutations Underlies a Complex and Different Mechanism of Multilocus Methylation Defect in Pseudohypoparathyroidism Type 1b. Human Mutation, 2013, 34, 1172-1180.	1.1	43
79	The significance of MEN1 mutations in pituitary carcinomas. Biomarkers in Medicine, 2013, 7, 567-569.	0.6	2
80	Sinonasal Paraganglioma With Long-Delayed Recurrence and Metastases: Genetic and Imaging Findings. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4262-4266.	1.8	8
81	Targeting Dopamine Receptors Subtype 2 (D2DR) in Pheochromocytomas: Head-to-Head Comparison Between In Vitro and In Vivo Findings. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1951-E1955.	1.8	6
82	First Report of Bilateral Pheochromocytoma in the Clinical Spectrum of <i>HIF2A</i> -Related Polycythemia-Paraganglioma Syndrome. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E908-E913.	1.8	54
83	Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis. European Journal of Endocrinology, 2013, 168, 533-541.	1.9	146
84	Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: a Groupe d'étude des Tumeurs Endocrines (GTE) cohort study. Human Molecular Genetics, 2013, 22, 1940-1948.	1.4	81
85	Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of Gsp mutations. Endocrine-Related Cancer, 2013, 20, 753-766.	1.6	50
86	Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by ¹⁸ Fâ€ <scp>FDOPA PET</scp> : focus on missed lesions. Clinical Endocrinology, 2013, 79, 170-177.	1.2	49
87	A New Specific Succinate-Glutamate Metabolomic Hallmark in Sdhx-Related Paragangliomas. PLoS ONE, 2013, 8, e80539.	1.1	39
88	Cyclin-dependent kinase inhibitor 1B (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocrine-Related Cancer, 2012, 19, 233-241.	1.6	72
89	Phenotypic Homogeneity and Genotypic Variability in a Large Series of Congenital Isolated ACTH-Deficiency Patients with <i>TPIT</i> Gene Mutations. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E486-E495.	1.8	67
90	Deficit in Anterior Pituitary Function and Variable Immune Deficiency (DAVID) in Children Presenting with Adrenocorticotropin Deficiency and Severe Infections. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E121-E128.	1.8	54

#	Article	IF	CITATIONS
91	PROKR2 Variants in Multiple Hypopituitarism with Pituitary Stalk Interruption. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1068-E1073.	1.8	68
92	A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics, 2012, 7, 1079-1090.	1.3	81
93	Inactivation of Transcription Factor Pit-1 to Target Tumoral Somatolactotroph Cells. Human Gene Therapy, 2012, 23, 104-114.	1.4	10
94	First Report of Harlequin Syndrome as the Presenting Feature of Carney Triad: A Diagnostic and Imaging Challenge. Journal of Clinical Oncology, 2012, 30, e168-e171.	0.8	7
95	Ras and Rap1 govern spatiotemporal dynamic of activated ERK in pituitary living cells. Cellular Signalling, 2012, 24, 2237-2248.	1.7	8
96	Long-term control of a MEN1 prolactin secreting pituitary carcinoma after temozolomide treatment. Annales D'Endocrinologie, 2012, 73, 225-229.	0.6	26
97	Genetic causes of combined pituitary hormone deficiencies in humans. Annales D'Endocrinologie, 2012, 73, 53-55.	0.6	17
98	Unilateral agenesis of internal carotid artery associated with congenital combined pituitary hormone deficiency and pituitary stalk interruption without HESX1, LHX4 or OTX2 mutation: a case report. Pituitary, 2012, 15, 81-86.	1.6	11
99	Preoperative 18Fâ€FDG Uptake is Strongly Correlated with Malignancy, Weiss Score, and Molecular Markers of Aggressiveness in Adrenal Cortical Tumors. World Journal of Surgery, 2012, 36, 1406-1410.	0.8	40
100	Somatostatin receptor sst2 gene transfer in human prolactinomas in vitro: Impact on sensitivity to dopamine, somatostatin and dopastatin, in the control of prolactin secretion. Molecular and Cellular Endocrinology, 2012, 355, 106-113.	1.6	22
101	Inactivation of PITX2 Transcription Factor Induced Apoptosis of Gonadotroph Tumoral Cells. Endocrinology, 2011, 152, 3884-3892.	1.4	22
102	Physiopathology of somatolactotroph cells: from transduction mechanisms to cotargeting therapy. Annals of the New York Academy of Sciences, 2011, 1220, 60-70.	1.8	15
103	Detection of genetic hypopituitarism in an adult population of idiopathic pituitary insufficiency patients with growth hormone deficiency. Pituitary, 2011, 14, 208-216.	1.6	13
104	Case seminar: a young female with acute hyponatremia and a sellar mass. Endocrine, 2011, 40, 325-331.	1.1	17
105	Pituitary stalk interruption syndrome in 83 patients: novel HESX1 mutation and severe hormonal prognosis in malformative forms. European Journal of Endocrinology, 2011, 164, 457-465.	1.9	77
106	Expression of somatostatin receptors, dopamine D2 receptors, noradrenaline transporters, and vesicular monoamine transporters in 52 pheochromocytomas and paragangliomas. Endocrine-Related Cancer, 2011, 18, 287-300.	1.6	47
107	High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. European Journal of Endocrinology, 2011, 165, 509-515.	1.9	152
108	Should Routine Analysis of the <i>MEN1</i> Gene be Performed in all Patients with Primary Hyperparathyroidism Under 40 Years of Age?. World Journal of Surgery, 2010, 34, 1294-1298.	0.8	30

#	Article	IF	CITATIONS
109	Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathologica, 2010, 120, 719-729.	3.9	255
110	Clinical Characteristics and Therapeutic Responses in Patients with Germ-Line <i>AIP</i> Mutations and Pituitary Adenomas: An International Collaborative Study. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E373-E383.	1.8	323
111	A Potential Inhibitory Role for the New Truncated Variant of Somatostatin Receptor 5, sst5TMD4, in Pituitary Adenomas Poorly Responsive to Somatostatin Analogs. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2497-2502.	1.8	88
112	Prognostic Factors in Prolactin Pituitary Tumors: Clinical, Histological, and Molecular Data from a Series of 94 Patients with a Long Postoperative Follow-Up. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1708-1716.	1.8	144
113	Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocrine-Related Cancer, 2009, 16, 1029-1043.	1.6	134
114	¹⁸ F-FDG Avidity of Pheochromocytomas and Paragangliomas: A New Molecular Imaging Signature?. Journal of Nuclear Medicine, 2009, 50, 711-717.	2.8	125
115	Relevance of coexpression of somatostatin and dopamine D2 receptors in pituitary adenomas. Molecular and Cellular Endocrinology, 2008, 286, 206-213.	1.6	43
116	Congenital pituitary hormone deficiencies: role ofLHX3/LHX4genes. Expert Review of Endocrinology and Metabolism, 2008, 3, 751-760.	1.2	1
117	Somatostatin Receptor sst2 Decreases Cell Viability and Hormonal Hypersecretion and Reverses Octreotide Resistance of Human Pituitary Adenomas. Cancer Research, 2008, 68, 10163-10170.	0.4	39
118	Somatostatinergic ligands in dopamine-sensitive and -resistant prolactinomas. European Journal of Endocrinology, 2008, 158, 595-603.	1.9	76
119	A Novel Dysfunctional LHX4 Mutation with High Phenotypical Variability in Patients with Hypopituitarism. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2790-2799.	1.8	73
120	Mutations in theAryl Hydrocarbon Receptor Interacting ProteinGene Are Not Highly Prevalent among Subjects with Sporadic Pituitary Adenomas. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1952-1955.	1.8	132
121	Aryl Hydrocarbon Receptor-Interacting Protein Gene Mutations in Familial Isolated Pituitary Adenomas: Analysis in 73 Families. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1891-1896.	1.8	283
122	Gsα overexpression and loss of Gsα imprinting in human somatotroph adenomas: Association with tumor size and response to pharmacologic treatment. International Journal of Cancer, 2007, 121, 1245-1252.	2.3	38
123	Quinagolide – a valuable treatment option for hyperprolactinaemia. European Journal of Endocrinology, 2006, 154, 187-195.	1.9	91
124	Pituitary Transcription Factors: From Congenital Deficiencies to Gene Therapy. Journal of Neuroendocrinology, 2006, 18, 633-642.	1.2	66
125	Genetic Screening of Combined Pituitary Hormone Deficiency: Experience in 195 Patients. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3329-3336.	1.8	132
126	The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies. European Journal of Endocrinology, 2006, 155, 849-857.	1.9	87

#	Article	IF	CITATIONS
127	An Uncommon Phenotype with Familial Central Hypogonadism Caused by a Novel PROP1 Gene Mutant Truncated in the Transactivation Domain. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4880-4887.	1.8	61
128	Congenital Isolated Adrenocorticotropin Deficiency: An Underestimated Cause of Neonatal Death, Explained byTPITGene Mutations. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1323-1331.	1.8	116
129	A Familial Form of Congenital Hypopituitarism Due to aPROP1Mutation in a Large Kindred: Phenotypic and in VitroFunctional Studies. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5779-5786.	1.8	75
130	Lentiviral vectors efficiently transduce human gonadotroph and somatotroph adenomas in vitro. Targeted expression of transgene by pituitary hormone promoters. Journal of Endocrinology, 2004, 183, 217-233.	1.2	12
131	A Neonatal Form of Isolated ACTH Deficiency Frequently Associated with Tpit Gene Mutations. Endocrine Research, 2004, 30, 943-944.	0.6	7
132	Pituitary hormone deficiencies due to transcription factor gene alterations. Growth Hormone and IGF Research, 2004, 14, 442-448.	0.5	29
133	Imprinting of the Gsl \pm gene GNAS1 in the pathogenesis of acromegaly. Journal of Clinical Investigation, 2001, 107, R31-R36.	3.9	266
134	Impact of <i>gsp</i> Oncogene on the Expression of Genes Coding for G _s α, Pit-1, G _i 2α, and Somatostatin Receptor 2 in Human Somatotroph Adenomas: Involvement in Octreotide Sensitivity ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2759-2765.	1.8	62
135	Pronostic and Therapeutic Consequences of Gsα Mutations in Somatotroph Adenomas1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1604-1610.	1.8	105
136	Prolactinomas resistant to bromocriptine: long-term efficacy of quinagolide and outcome of pregnancy. European Journal of Endocrinology, 1996, 135, 413-420.	1.9	104
137	A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2790-2796.	1.8	67
138	Polymorphism or mutation? - The role of the R304Q missense AIP mutation in the predisposition to pituitary adenoma. Endocrine Abstracts, 0, , .	0.0	2
139	From pseudohypoparathyroidism to inactivating PTH/PTHrP signaling disorder (iPPSD), a novel classification proposed by the European EuroPHP-network. Endocrine Abstracts, 0, , .	0.0	0
140	UMD-MEN1 database: analysis of clinical and genetic data from 1,676 patients by the TENGEN network. Endocrine Abstracts, 0, , .	0.0	0
141	Non-invasive detection of GNAS mutations causing McCune-Albright Syndrome with ddPCR on whole blood or circulating DNA. Endocrine Abstracts, 0, , .	0.0	0