
Matthias F Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunological effects of adjuvanted lowâ€dose allergoid allergenâ€specific immunotherapy in experimental murine house dust mite allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 907-919.	5.7	6
2	Micronutritional supplementation with a holoBLGâ€based FSMP (food for special medical) Tj ETQq0 0 0 rgBT Clinical and Experimental Allergy, 2022, 52, 426-441.	/Overlock 10 2.9	0 Tf 50 707 T 14
3	Long-term benefits of targeted micronutrition with the holoBLG lozenge in house dust mite allergic patients. Allergo Journal International, 2022, 31, 161-171.	2.0	9
4	Ex Vivo Immunomodulatory Effects of Lactobacillus-, Lacticaseibacillus-, and Bifidobacterium-Containing Synbiotics on Human Peripheral Blood Mononuclear Cells and Monocyte-Derived Dendritic Cells in the Context of Grass Pollen Allergy. Probiotics and Antimicrobial Proteins, 2022, , 1.	3.9	0
5	Ameliorating Atopy by Compensating Micronutritional Deficiencies in Immune Cells: AÂDouble-Blind Placebo-Controlled Pilot Study. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1889-1902.e9.	3.8	11
6	Allergen Content of Therapeutic Preparations for Allergen-Specific Immunotherapy of European Paper Wasp Venom Allergy. Toxins, 2022, 14, 284.	3.4	7
7	Clinical performance of house-dust-mite-specific subcutaneous immunotherapy in aÂpostmarket noninterventional setting. Allergo Journal International, 2021, 30, 46-49.	2.0	2
8	First evaluation of a symbiotic food supplement in an allergen exposure chamber in birch pollen allergic patients. World Allergy Organization Journal, 2021, 14, 100494.	3.5	14
9	Targeted micronutrition via holo-BLG based on the farm effect in house dust mite allergic rhinoconjunctivitis patients – first evaluation in a standardized allergen exposure chamber. Allergo Journal International, 2021, 30, 141-149.	2.0	18
10	Venom Immunotherapy: From Proteins to Product to Patient Protection. Toxins, 2021, 13, 616.	3.4	3
11	Dogmas, challenges, and promises in phase III allergen immunotherapy studies. World Allergy Organization Journal, 2021, 14, 100578.	3.5	3
12	Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. Journal of Allergy and Clinical Immunology, 2020, 145, 1240-1253.e3.	2.9	72
13	Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT®). Frontiers in Immunology, 2020, 11, 594911.	4.8	12
14	Vaccination against Allergy: A Paradigm Shift?. Trends in Molecular Medicine, 2020, 26, 357-368.	6.7	24
15	Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection. Vaccines, 2019, 7, 72.	4.4	33
16	Vaccination with nanoparticles combined with micro-adjuvants protects against cancer. , 2019, 7, 114.		41
17	Shortened up-dosing with sublingual immunotherapy drops containing tree allergens is well tolerated and elicits dose-dependent clinical effects during the first pollen season. World Allergy Organization Journal, 2019, 12, 100012.	3.5	3
18	Aluminium (Al) speciation in serum and urine after subcutaneous venom immunotherapy with Al as adjuvant. Journal of Trace Elements in Medicine and Biology, 2018, 49, 178-183.	3.0	5

MATTHIAS F KRAMER

#	Article	IF	CITATIONS
19	Microcrystalline Tyrosine and Aluminum as Adjuvants in Allergen-Specific Immunotherapy Protect from IgE-Mediated Reactivity in Mouse Models and Act Independently of Inflammasome and TLR Signaling. Journal of Immunology, 2018, 200, 3151-3159.	0.8	39
20	DOPS Adjuvant Confers Enhanced Protection against Malaria for VLP-TRAP Based Vaccines. Diseases (Basel, Switzerland), 2018, 6, 107.	2.5	7
21	Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International, 2018, 27, 245-255.	2.0	38
22	Clinical use of adjuvants in allergen-immunotherapy. Expert Review of Clinical Immunology, 2017, 13, 599-610.	3.0	46
23	Virus-Like Particle (VLP) Plus Microcrystalline Tyrosine (MCT) Adjuvants Enhance Vaccine Efficacy Improving T and B Cell Immunogenicity and Protection against Plasmodium berghei/vivax. Vaccines, 2017, 5, 10.	4.4	28
24	Microcrystalline Tyrosine (MCT®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria. Vaccines, 2017, 5, 32.	4.4	15
25	The grass pollen season 2015: a proof of concept multi-approach study in three different European cities. World Allergy Organization Journal, 2017, 10, 31.	3.5	26
26	Real-Life Study for the Diagnosis of House Dust Mite Allergy - The Value of Recombinant Allergen-Based IgE Serology. International Archives of Allergy and Immunology, 2016, 170, 132-137.	2.1	45
27	The grass pollen season 2014 in Vienna: A pilot study combining phenology, aerobiology and symptom data. Science of the Total Environment, 2016, 566-567, 1614-1620.	8.0	35
28	Cytokine patterns in nasal secretion of non-atopic patients distinguish between chronic rhinosinusitis with or without nasal polys. Allergy, Asthma and Clinical Immunology, 2016, 12, 19.	2.0	41
29	Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants. Bioanalysis, 2016, 8, 547-556.	1.5	17
30	Non-allergic rhinitis with eosinophilia syndrome is not associated with local production of specific IgE in nasal mucosa. European Archives of Oto-Rhino-Laryngology, 2016, 273, 1469-1475.	1.6	34
31	Cytokine profiles in nasal fluid of patients with seasonal or persistent allergic rhinitis. Allergy, Asthma and Clinical Immunology, 2015, 11, 26.	2.0	54
32	Probiotics in the Treatment of Chronic Rhinoconjunctivitis and Chronic Rhinosinusitis. Journal of Allergy, 2014, 2014, 1-7.	0.7	12
33	Aluminium in allergen-specific subcutaneous immunotherapy – A German perspective. Vaccine, 2014, 32, 4140-4148.	3.8	50
34	lgE reactivity profiles among house dust mite allergic patients in Bavaria. European Archives of Oto-Rhino-Laryngology, 2013, 270, 3177-3182.	1.6	9
35	Sinonasal outcome under aspirin desensitization following functional endoscopic sinus surgery in patients with aspirin triad. European Archives of Oto-Rhino-Laryngology, 2013, 270, 571-578.	1.6	58
36	Eosinophils and mast cells: a comparison of nasal mucosa histology and cytology to markers in nasal discharge in patients with chronic sino-nasal diseases. European Archives of Oto-Rhino-Laryngology, 2013, 270, 2667-2676.	1.6	26

MATTHIAS F KRAMER

#	Article	IF	CITATIONS
37	Correlation of three variables describing nasal patency (HD, MCA, NOSE score) in healthy subjects. Brazilian Journal of Otorhinolaryngology, 2013, 79, 354-358.	1.0	8
38	Olfactory dysfunction in seasonal and perennial allergic rhinitis. Acta Oto-Laryngologica, 2012, 132, 763-768.	0.9	39
39	Mediators and Cytokines in Persistent Allergic Rhinitis and Nonallergic Rhinitis with Eosinophilia Syndrome. International Archives of Allergy and Immunology, 2012, 159, 171-178.	2.1	37
40	lgE Reactivity Patterns in Patients with Allergic Rhinoconjunctivitis to Ragweed and Mugwort Pollens. American Journal of Rhinology and Allergy, 2012, 26, 31-35.	2.0	15
41	Septal injection of botulinum neurotoxin A for idiopathic rhinitis: a pilot study. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2012, 33, 64-67.	1.3	15
42	Tropomyosin sensitization in house dust mite allergic patients. European Archives of Oto-Rhino-Laryngology, 2012, 269, 1291-1296.	1.6	29
43	Effects of oxymetazoline nasal spray on the nasal cycle assessed by long-term rhinoflowmetry. Rhinology, 2012, 50, 370-375.	1.3	9
44	Recombinant Marker Allergens in Diagnosis of Patients with Allergic Rhinoconjunctivitis to Tree and Grass Pollens. American Journal of Rhinology and Allergy, 2011, 25, 36-39.	2.0	30
45	Solitary chemosensory cells in the respiratory and vomeronasal epithelium of the human nose: a pilot study. Rhinology, 2011, 49, 507-512.	1.3	44
46	Exhaled and nasal nitric oxide in laryngectomized patients. BMC Pulmonary Medicine, 2010, 10, 4.	2.0	5
47	Recombinant allergen profiles and health-related quality of life in seasonal allergic rhinitis. Allergy and Asthma Proceedings, 2010, 31, 219-226.	2.2	6
48	Evidence for the involvement of free light chain immunoglobulins in allergic and nonallergic rhinitis. Journal of Allergy and Clinical Immunology, 2010, 125, 139-145.e3.	2.9	79
49	Coexistence of acute hearing loss with retinal artery occlusion and encephalopathy. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2009, 30, 145-149.	1.3	2
50	Mediators and cytokines in allergic and viral-triggered rhinitis. Allergy and Asthma Proceedings, 2007, 28, 434-441.	2.2	44
51	Latex allergy, a special risk for patients of otorhinolaryngology and head and neck surgery?. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2007, 28, 103-109.	1.3	1
52	Factors contributing to nasal allergic late phase eosinophilia. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2006, 27, 190-199.	1.3	33
53	An approach of immunoneurological aspects in nasal allergic late phase. Allergy and Asthma Proceedings, 2005, 26, 382-90.	2.2	4
54	Nares: a risk factor for obstructive sleep apnea?. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2004, 25, 173-177.	1.3	31

MATTHIAS F KRAMER

#	Article	IF	CITATIONS
55	Health-Related Quality of Life in rhino surgery. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2003, 24, 97-105.	1.3	16
56	Immunohistological Expression of Interleukin 16 in Human Tonsils. JAMA Otolaryngology, 2001, 127, 1120.	1.2	11
57	Nasal IL-16 and MIP-1 α in Late-Phase Allergic Response. Allergy and Asthma Proceedings, 2001, 22, 127-132.	2.2	12
58	Nasal Interleukin-5, Immunoglobulin E, Eosinophilic Cationic Protein, and Soluble Intercellular Adhesion Molecule-1 in Chronic Sinusitis, Allergic Rhinitis, and Nasal Polyposis. Laryngoscope, 2000, 110, 1056-1062.	2.0	65
59	Occurrence of a terminal vascularisation after experimental myocardial infarction. Cell and Tissue Research, 1997, 291, 97-105.	2.9	11