Jerome M Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186034/publications.pdf

Version: 2024-02-01

687363 610901 1,106 24 13 24 citations h-index g-index papers 30 30 30 1931 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metabolic Engineering, 2022, 69, 209-220.	7.0	7
2	Analysis of Three Architectures for Controlling PTP1B with Light. ACS Synthetic Biology, 2022, 11, 61-68.	3.8	5
3	Optogenetic Analysis of Allosteric Control in Protein Tyrosine Phosphatases. Biochemistry, 2021, 60, 254-258.	2.5	9
4	Microbially Guided Discovery and Biosynthesis of Biologically Active Natural Products. ACS Synthetic Biology, 2021, 10, 1505-1519.	3.8	11
5	Optogenetic interrogation and control of cell signaling. Current Opinion in Biotechnology, 2020, 66, 195-206.	6.6	14
6	A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23557-23564.	7.1	9
7	Minimally disruptive optical control of protein tyrosine phosphatase 1B. Nature Communications, 2020, 11, 788.	12.8	27
8	The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annual Review of Biophysics, 2018, 47, 223-250.	10.0	130
9	Evolutionarily Conserved Allosteric Communication in Protein Tyrosine Phosphatases. Biochemistry, 2018, 57, 6443-6451.	2.5	32
10	Analysis of Interdependent Kinetic Controls of Fatty Acid Synthases. ACS Catalysis, 2018, 8, 11722-11734.	11.2	14
11	Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Biochemistry, 2018, 57, 5886-5896.	2.5	20
12	Waterâ€Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase. Angewandte Chemie - International Edition, 2017, 56, 3833-3837.	13.8	28
13	Waterâ€Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase. Angewandte Chemie, 2017, 129, 3891-3895.	2.0	6
14	Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature, 2016, 537, 656-660.	27.8	243
15	Acetylation of Surface Lysine Groups of a Protein Alters the Organization and Composition of Its Crystal Contacts. Journal of Physical Chemistry B, 2016, 120, 6461-6468.	2.6	9
16	Warning signals for eruptive events in spreading fires. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2378-2383.	7.1	21
17	Reply to Sullivan and Cruz: Defense of a simplified physical model. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4165-E4165.	7.1	1
18	Interactions between Hofmeister Anions and the Binding Pocket of a Protein. Journal of the American Chemical Society, 2015, 137, 3859-3866.	13.7	89

#	Article	IF	CITATION
19	Engineering Shadows to Fabricate Optical Metasurfaces. ACS Nano, 2014, 8, 11061-11070.	14.6	91
20	A single-molecule analysis reveals morphological targets for cellulase synergy. Nature Chemical Biology, 2013, 9, 356-361.	8.0	69
21	Initial- and Processive-Cut Products Reveal Cellobiohydrolase Rate Limitations and the Role of Companion Enzymes. Biochemistry, 2012, 51, 442-452.	2.5	93
22	An evaluation of cellulose saccharification and fermentation with an engineered <i>Saccharomyces cerevisiae</i> capable of cellobiose and xylose utilization. Biotechnology Journal, 2012, 7, 361-373.	3.5	10
23	A mechanistic model for rational design of optimal cellulase mixtures. Biotechnology and Bioengineering, 2011, 108, 2561-2570.	3.3	37
24	A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2010, 107, 37-51.	3.3	129