Jana Vukovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4186021/publications.pdf Version: 2024-02-01

ΙΔΝΑ ΥΠΚΟΥΙΟ

#	Article	IF	CITATIONS
1	Donor bone marrow–derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice. Blood, 2022, 139, 1389-1408.	0.6	14
2	Selective Ablation of BDNF from Microglia Reveals Novel Roles in Self-Renewal and Hippocampal Neurogenesis. Journal of Neuroscience, 2021, 41, 4172-4186.	1.7	29
3	An exercise "sweet spot―reverses cognitive deficits of aging by growth-hormone-induced neurogenesis. IScience, 2021, 24, 103275.	1.9	12
4	Exercise reverses learning deficits induced by hippocampal injury by promoting neurogenesis. Scientific Reports, 2020, 10, 19269.	1.6	13
5	Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell, 2020, 180, 833-846.e16.	13.5	292
6	Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice. STAR Protocols, 2020, 1, 100211.	0.5	9
7	Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation. Brain Research Bulletin, 2017, 132, 150-159.	1.4	7
8	Somatic Arc protein expression in hippocampal granule cells is increased in response to environmental change but independent of task-specific learning. Scientific Reports, 2017, 7, 12477.	1.6	6
9	Protocol for Short- and Longer-term Spatial Learning and Memory in Mice. Frontiers in Behavioral Neuroscience, 2017, 11, 197.	1.0	24
10	IVIg attenuates complement and improves spinal cord injury outcomes in mice. Annals of Clinical and Translational Neurology, 2016, 3, 495-511.	1.7	31
11	Blockade of microglial K _{ATP} â€channel abrogates suppression of inflammatoryâ€mediated inhibition of neural precursor cells. Glia, 2014, 62, 247-258.	2.5	17
12	Immature Doublecortin-Positive Hippocampal Neurons Are Important for Learning But Not for Remembering. Journal of Neuroscience, 2013, 33, 6603-6613.	1.7	114
13	A Novel Fluorescent Reporter CDy1 Enriches for Neural Stem Cells Derived from the Murine Brain. Stem Cells and Development, 2013, 22, 2341-2345.	1.1	6
14	Microglia Modulate Hippocampal Neural Precursor Activity in Response to Exercise and Aging. Journal of Neuroscience, 2012, 32, 6435-6443.	1.7	186
15	Prolactin Stimulates Precursor Cells in the Adult Mouse Hippocampus. PLoS ONE, 2012, 7, e44371.	1.1	68
16	GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice. PLoS ONE, 2012, 7, e49912.	1.1	28
17	Activation of neural precursors in the adult neurogenic niches. Neurochemistry International, 2011, 59, 341-6.	1.9	25
18	CX3CR1 deficiency exacerbates neuronal loss and impairs early regenerative responses in the target-ablated olfactory epithelium. Molecular and Cellular Neurosciences, 2011, 48, 236-245.	1.0	32

JANA VUKOVIC

#	Article	IF	CITATIONS
19	Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in Geriatric Mouse Muscle. PLoS ONE, 2011, 6, e28090.	1.1	172
20	Bone marrow chimeric mice reveal a role for CX3CR1 in maintenance of the monocyte-derived cell population in the olfactory neuroepithelium. Journal of Leukocyte Biology, 2010, 88, 645-654.	1.5	11
21	The glycoprotein fibulinâ€3 regulates morphology and motility of olfactory ensheathing cells <i>in vitro</i> . Glia, 2009, 57, 424-443.	2.5	44
22	EM.P.3.05 Expression of fibulins 1–5 during myogenesis in vitro and in skeletal muscle regenerating in vivo, and in dystrophic mdx muscles. Neuromuscular Disorders, 2009, 19, 575.	0.3	0
23	Lack of fibulin-3 alters regenerative tissue responses in the primary olfactory pathway. Matrix Biology, 2009, 28, 406-415.	1.5	10
24	CX3CL1/fractalkine regulates branching and migration of monocyte-derived cells in the mouse olfactory epithelium. Journal of Neuroimmunology, 2008, 205, 80-85.	1.1	38
25	Promoting central nervous system regeneration: lessons from cranial nerve I. Restorative Neurology and Neuroscience, 2008, 26, 183-96.	0.4	6
26	Influence of adult Schwann cells and olfactory ensheathing glia on axontarget cell interactions in the CNS a comparative analysis using a retinotectal cograft model. Neuron Glia Biology, 2007, 3, 105-117.	2.0	17
27	Olfactory Ensheathing Cells: Characteristics, Genetic Engineering, and Therapeutic Potential. Journal of Neurotrauma, 2006, 23, 468-478.	1.7	53