Thomas Iskratsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factoring in the force: A novel role for eIF6. Journal of Cell Biology, 2022, 221, .	5.2	2
2	Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Science Advances, 2022, 8, eabm3471.	10.3	19
3	Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. Journal of Experimental and Clinical Cancer Research, 2021, 40, 139.	8.6	33
4	Announcing the call for the Special Issue on "Cardiovascular mechanobiology—a special issue to look at the state of the art and the newest insights into the role of mechanical forces in cardiovascular development, physiology, and disease― Biophysical Reviews, 2021, 13, 307-308.	3.2	2
5	Cardiovascular mechanobiology—a Special Issue to look at the state of the art and the newest insights into the role of mechanical forces in cardiovascular development, physiology and disease. Biophysical Reviews, 2021, 13, 575-577.	3.2	2
6	Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophysical Reviews, 2021, 13, 611-623.	3.2	10
7	Mix and (mis-)match – The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118436.	4.1	39
8	Contractile myosin rings and cofilin-mediated actin disassembly orchestrate ECM nanotopography sensing. Biomaterials, 2020, 232, 119683.	11.4	15
9	Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. Journal of Muscle Research and Cell Motility, 2019, 40, 197-209.	2.0	26
10	Lamin-A Mechano-Protects the Heart. Developmental Cell, 2019, 49, 821-822.	7.0	4
11	Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Research, 2019, 79, 4371-4386.	0.9	44
12	Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control. Faraday Discussions, 2019, 219, 203-219.	3.2	36
13	Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions. Developmental Cell, 2018, 44, 326-336.e3.	7.0	101
14	Similar Effects of Humoral or Mechanical Stress on Cell-Cell Contacts in Cultured Cardiomyocytes. Biophysical Journal, 2018, 114, 496a.	0.5	0
15	Calponin-3 is critical for coordinated contractility of actin stress fibers. Scientific Reports, 2018, 8, 17670.	3.3	22
16	Polymer fiber-based models of connective tissue repair and healing. Biomaterials, 2017, 112, 303-312.	11.4	80
17	Cellular Stress Affects the Nucleoskeleton in Dilated Cardiomyopathy. Biophysical Journal, 2016, 110, 366a-367a.	0.5	0
18	Actin polymerizationâ€dependent activation of Cas‣ promotes immunological synapse stability. Immunology and Cell Biology, 2016, 94, 981-993.	2.3	20

THOMAS ISKRATSCH

#	Article	IF	CITATIONS
19	α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Molecular Biology of the Cell, 2016, 27, 3471-3479.	2.1	68
20	Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on softÂmatrices. Nature Cell Biology, 2016, 18, 33-42.	10.3	168
21	Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells. Integrative Biology (United Kingdom), 2015, 7, 1272-1284.	1.3	90
22	Early Events in Cell Spreading as a Model for Quantitative Analysis of Biomechanical Events. Biophysical Journal, 2014, 107, 2508-2514.	0.5	57
23	Appreciating force and shape — the rise of mechanotransduction in cell biology. Nature Reviews Molecular Cell Biology, 2014, 15, 825-833.	37.0	634
24	N-WASP-directed actin polymerization activates p130Cas phosphorylation and lamellipodium spreading. Journal of Cell Science, 2014, 127, 1394-405.	2.0	36
25	The Formin FHOD1 in Cardiomyocytes. Anatomical Record, 2014, 297, 1560-1570.	1.4	24
26	FHOD1 at Early Integrin Adhesions Drives Cell Spreading. Biophysical Journal, 2014, 106, 163a.	0.5	0
27	FHOD1 Is Needed for Directed Forces and Adhesion Maturation during Cell Spreading and Migration. Developmental Cell, 2013, 27, 545-559.	7.0	107
28	Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions. Molecular Biology of the Cell, 2013, 24, 21-30.	2.1	45
29	Sarcomere-Like Units Contract Cell Edges. Biophysical Journal, 2013, 104, 477a-478a.	0.5	1
30	Two distinct phosphorylation events govern the function of muscle FHOD3. Cellular and Molecular Life Sciences, 2013, 70, 893-908.	5.4	41
31	Finding the weakest link – exploring integrin-mediated mechanical molecular pathways. Journal of Cell Science, 2012, 125, 3025-38.	2.0	215
32	Actin in striated muscle: recent insights into assembly and maintenance. Biophysical Reviews, 2012, 4, 17-25.	3.2	9
33	Formin-g muscle cytoarchitecture. Bioarchitecture, 2011, 1, 66-68.	1.5	12
34	Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. Journal of General Physiology, 2011, 137, i1-i1.	1.9	0
35	Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. Journal of Cell Biology, 2010, 191, 1159-1172.	5.2	102
36	Specificity analysis of lectins and antibodies using remodeled glycoproteins. Analytical Biochemistry, 2009, 386, 133-146.	2.4	124

#	Article	IF	CITATIONS
37	Aberrant development of neuromuscular junctions in glycosylation-defective Largemyd mice. Neuromuscular Disorders, 2009, 19, 366-378.	0.6	15
38	Mammalian cells contain a second nucleocytoplasmic hexosaminidase. Biochemical Journal, 2009, 419, 83-90.	3.7	25