Martin Diehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185828/publications.pdf Version: 2024-02-01

Μλατινι Πιεμι

#	Article	IF	CITATIONS
1	Determination and analysis of the constitutive parameters of temperature-dependent dislocation-density-based crystal plasticity models. Mechanics of Materials, 2022, 164, 104117.	3.2	24
2	Predicting grain boundary damage by machine learning. International Journal of Plasticity, 2022, 150, 103186.	8.8	21
3	Characterizing Localized Microstructural Deformation of Multiphase Steel by Crystal Plasticity Simulation with Multi-Constitutive Law. Journal of the Japan Society for Technology of Plasticity, 2022, 63, 1-8.	0.3	0
4	Modeling and simulation of microstructure in metallic systems based on multi-physics approaches. Npj Computational Materials, 2022, 8, .	8.7	10
5	Coupling crystal plasticity and cellular automaton models to study meta-dynamic recrystallization during hot rolling at high strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143471.	5.6	7
6	Crystal plasticity simulation of in-grain microstructural evolution during large deformation of IF-steel. Acta Materialia, 2022, 237, 118167.	7.9	15
7	Lath Martensite Microstructure Modeling: A High-Resolution Crystal Plasticity Simulation Study. Materials, 2021, 14, 691.	2.9	13
8	Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshing. International Journal of Plasticity, 2021, 146, 103078.	8.8	16
9	Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations. Journal of Materials Processing Technology, 2020, 277, 116449.	6.3	28
10	Coupled experimental-computational analysis of primary static recrystallization in low carbon steel. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 014001.	2.0	5
11	Solving Material Mechanics and Multiphysics Problems of Metals with Complex Microstructures Using DAMASK—The Düsseldorf Advanced Material Simulation Kit. Advanced Engineering Materials, 2020, 22, 1901044.	3.5	11
12	Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5517-5586.	2.2	115
13	An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. International Journal of Plasticity, 2020, 134, 102779.	8.8	66
14	On the interaction of precipitates and tensile twins in magnesium alloys. Acta Materialia, 2019, 178, 146-162.	7.9	80
15	The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085005.	2.0	3
16	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2019, , 1-25.		0
17	Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 295-306.	5.6	14
18	DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158, 420-478.	3.0	440

MARTIN DIEHL

#	Article	IF	CITATIONS
19	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2019, , 1-26.		2
20	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2019, , 1347-1372.		7
21	Quantifying the Contribution of Crystallographic Texture and Grain Morphology on the Elastic and Plastic Anisotropy of bcc Steel. Metals, 2019, 9, 1252.	2.3	16
22	An integrated crystal plasticity–phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials. International Journal of Plasticity, 2018, 106, 203-227.	8.8	125
23	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2018, , 1-27.		5
24	Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. , 2018, , 1-25.		1
25	Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling. Computational Materials Science, 2018, 155, 541-553.	3.0	15
26	On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity. Mechanics of Materials, 2018, 125, 70-79.	3.2	12
27	Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach. Jom, 2017, 69, 848-855.	1.9	71
28	A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations. Integrating Materials and Manufacturing Innovation, 2017, 6, 83-91.	2.6	5
29	Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. Jom, 2017, 69, 872-878.	1.9	46
30	Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure. Physical Mesomechanics, 2017, 20, 311-323.	1.9	58
31	Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale. MRS Communications, 2017, 7, 735-746.	1.8	16
32	Neighborhood influences on stress and strain partitioning in dual-phase microstructures. Meccanica, 2016, 51, 429-441.	2.0	45
33	A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. International Journal of Plasticity, 2016, 80, 111-138.	8.8	147
34	Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. International Journal of Plasticity, 2016, 78, 242-265.	8.8	137
35	Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression. Acta Materialia, 2016, 103, 796-808.	7.9	15
36	Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of singleâ€crystal tungsten strength. GAMM Mitteilungen, 2015, 38, 213-227.	5.5	13

MARTIN DIEHL

#	Article	IF	CITATIONS
37	An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design. Annual Review of Materials Research, 2015, 45, 391-431.	9.3	469
38	Analytical bounds of in-plane Young's modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures. Computational Materials Science, 2015, 109, 323-329.	3.0	4
39	Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. International Journal of Plasticity, 2015, 66, 31-45.	8.8	159
40	In situ observation of collective grain-scale mechanics in Mg and Mg–rare earth alloys. Acta Materialia, 2014, 80, 77-93.	7.9	91
41	Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Materialia, 2014, 81, 386-400.	7.9	285
42	Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity, 2014, 63, 198-210.	8.8	412
43	A spectral method solution to crystal elasto-viscoplasticity at finite strains. International Journal of Plasticity, 2013, 46, 37-53.	8.8	332
44	DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM, 2012, 3, 3-10.	1.2	159