List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/418578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Biochar and Vermiwash to Improve Biological Activities of Soil. Agriculture (Switzerland), 2022, 12, 178.	3.1	7
2	Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy, 2022, 12, 418.	3.0	4
3	Cover Crop Introduction in a Mediterranean Maize Cropping System. Effects on Soil Variables and Yield. Agronomy, 2021, 11, 549.	3.0	4
4	Biosolids Benefit Yield and Nitrogen Uptake in Winter Cereals without Excess Risk of N Leaching. Agronomy, 2021, 11, 1482.	3.0	7
5	The Importance of Root Interactions in Field Bean/Triticale Intercrops. Plants, 2020, 9, 1474.	3.5	9
6	Field Inoculation of Bread Wheat with Rhizophagus irregularis under Organic Farming: Variability in Growth Response and Nutritional Uptake of Eleven Old Genotypes and A Modern Variety. Agronomy, 2020, 10, 333.	3.0	21
7	Rutin content in the forage and grain of common buckwheat (Fagopyrum esculentum) as affected by sowing time and irrigation in a Mediterranean environment. Crop and Pasture Science, 2020, 71, 171.	1.5	1
8	Reduced Growth and Nitrogen Uptake During Waterlogging at Tillering Permanently Affect Yield Components in Late Sown Oats. Frontiers in Plant Science, 2019, 10, 1087.	3.6	37
9	Editorial: Crop Response to Waterlogging. Frontiers in Plant Science, 2019, 10, 1578.	3.6	4
10	NITROGEN FIXATION OF GRAIN LEGUMES DIFFERS IN RESPONSE TO NITROGEN FERTILISATION. Experimental Agriculture, 2018, 54, 66-82.	0.9	38
11	Field bean for forage and grain in short-season rainfed Mediterranean conditions. Italian Journal of Agronomy, 2018, 13, 208-215.	1.0	9
12	Biosolids affect the growth, nitrogen accumulation and nitrogen leaching of barley. Plant, Soil and Environment, 2018, 64, 95-101.	2.2	14
13	Changes in biological properties and antioxidant capacity of an agricultural soil amended with sewage sludge. Archives of Agronomy and Soil Science, 2017, 63, 2062-2073.	2.6	3
14	Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant and Soil, 2017, 419, 153-167.	3.7	56
15	Effect of preceding crop on the agronomic and economic performance of durum wheat in the transition from conventional to reduced tillage. European Journal of Agronomy, 2017, 82, 125-133.	4.1	17
16	Biosolids differently affect seed yield, nodule growth, nodule-specific activity, and symbiotic nitrogen fixation of field bean. Crop and Pasture Science, 2017, 68, 735.	1.5	5
17	Barley Response to Waterlogging Duration at Tillering. Crop Science, 2016, 56, 2722-2730.	1.8	32
18	Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage. Italian Journal of Agronomy. 2016. 11. 100-106.	1.0	11

#	Article	IF	CITATIONS
19	Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Research Communications, 2016, 44, 706-716.	1.6	36
20	Waterlogging at tillering affects spike and spikelet formation in wheat. Crop and Pasture Science, 2016, 67, 703.	1.5	29
21	Forage and grain yield of common buckwheat in Mediterranean conditions: response to sowing time and irrigation. Crop and Pasture Science, 2016, 67, 1000.	1.5	8
22	A growth scale for the phasic development of common buckwheat. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 215-228.	0.6	5
23	Grain legumes differ in nitrogen accumulation and remobilisation during seed filling. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 127-132.	0.6	8
24	Nitrogen leaching and residual effect of barley/field bean intercropping. Plant, Soil and Environment, 2015, 61, 60-65.	2.2	30
25	Nitrate leaching from forage legume crops and residual effect on Italian ryegrass. Journal of Agricultural Economics, 2015, , .	0.3	4
26	Cadmium uptake and translocation in durum wheat varieties differing in grain-Cd accumulation. Plant, Soil and Environment, 2014, 60, 43-49.	2.2	49
27	The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	12
28	As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy. European Journal of Agronomy, 2013, 44, 38-45.	4.1	76
29	Effects of nitrogen splitting and source on durum wheat. Cereal Research Communications, 2013, 41, 338-347.	1.6	8
30	Recovery of understory vegetation in clear-cut stone pine (<i>Pinus pinea</i> L.) plantations. Plant Biosystems, 2012, 146, 244-258.	1.6	5
31	Optimizing forage yield of durum wheat/field bean intercropping through N fertilization and row ratio. Grass and Forage Science, 2012, 67, 243-254.	2.9	20
32	Management of sulphur fertiliser to improve durum wheat production and minimise S leaching. European Journal of Agronomy, 2012, 38, 74-82.	4.1	43
33	Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. European Journal of Agronomy, 2011, 35, 63-70.	4.1	41
34	Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen and temperature during grain filling. Cereal Research Communications, 2010, 38, 294-303.	1.6	13
35	Coordination between plant and apex development in Hordeum vulgare ssp. distichum. Comptes Rendus - Biologies, 2010, 333, 454-460.	0.2	10
36	Remobilization of Dry Matter and Nitrogen in Maize as Affected by Hybrid Maturity Class. Italian Journal of Agronomy, 2009, 4, 39.	1.0	10

#	Article	IF	CITATIONS
37	Accumulation of Dry Matter and Nitrogen in Durum Wheat During Grain Filling as Affected by Temperature and Nitrogen Rate. Italian Journal of Agronomy, 2009, 4, 3.	1.0	7
38	Above―and belowâ€ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass and Forage Science, 2009, 64, 401-412.	2.9	79
39	Sowing date affect spikelet number and grain yield of durum wheat. Cereal Research Communications, 2009, 37, 469-478.	1.6	18
40	Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 2008, 28, 138-147.	4.1	174
41	Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. European Journal of Agronomy, 2007, 26, 179-186.	4.1	149
42	Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biologia Plantarum, 2006, 50, 688-692.	1.9	63
43	Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 2006, 25, 309-318.	4.1	199
44	Response of miscanthus to toxic cadmium applications during the period of maximum growth. Environmental and Experimental Botany, 2006, 55, 29-40.	4.2	43
45	Effects of high chromium applications on miscanthus during the period of maximum growth. Environmental and Experimental Botany, 2006, 58, 234-243.	4.2	45
46	Dry matter accumulation and remobilization of durum wheat as affected by soil gravel content. Cereal Research Communications, 2006, 34, 1299-1306.	1.6	19
47	Growth responses of sorghum plants to chilling temperature and duration of exposure. European Journal of Agronomy, 2004, 21, 93-103.	4.1	64
48	Low cadmium application increase miscanthus growth and cadmium translocation. Environmental and Experimental Botany, 2004, 52, 89-100.	4.2	85
49	pH influence on root growth and nutrient uptake of Pinus pinaster seedlings. Chemosphere, 1998, 36, 733-738.	8.2	10
50	Heavy metals influence mineral nutrition of tree seedlings. Chemosphere, 1998, 36, 739-744.	8.2	30
51	The influence of pH on root morphology and mineral content ofPinus pinasterAit. seedlings. Plant Biosystems, 1998, 132, 3-9.	1.6	5
52	Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 1996, 97, 111-117.	5.2	114
53	Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 1996, 97, 111-117.	5.2	77
54	Nutrient Solutions Influence on Plant Growth in Stress Conditions. Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 423-423.	0.0	0

#	Article	IF	CITATIONS
55	Cadmium Tolerance in Halophilic (<i>Hordeum Maritimum</i>) and Glycophilic (<i>H. Murinum</i>) Species. Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 425-425.	0.0	ο
56	Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiology, 1995, 15, 411-415.	3.1	99
57	Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia Plantarum, 1994, 92, 675-680.	5.2	118
58	Heavy Metal Uptake and Distribution in Tree Seedlings. Giornale Botanico Italiano (Florence, Italy:) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 50

59	Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia Plantarum, 1994, 92, 675-680.	5.2	12
60	Response of cool-season grain legumes to waterlogging at flowering. Canadian Journal of Plant Science, 0, , 597-603.	0.9	34
61	Contribution of main culm and tillers to grain yield of durum wheat: Influence of sowing date and plant traits. Italian Journal of Agronomy, 0, , 235-247.	1.0	9