Jeffrey W Streicher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185673/publications.pdf

Version: 2024-02-01

		361413	377865
56	1,420	20	34
papers	citations	h-index	g-index
63	63	63	2257
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake. PLoS ONE, 2012, 7, e30953.	2.5	208
2	How Should Genes and Taxa be Sampled for Phylogenomic Analyses with Missing Data? An Empirical Study in Iguanian Lizards. Systematic Biology, 2016, 65, 128-145.	5.6	155
3	Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 2017, 13, 20170393.	2.3	79
4	Diversification and asymmetrical gene flow across time and space: lineage sorting and hybridization in polytypic barking frogs. Molecular Ecology, 2014, 23, 3273-3291.	3.9	78
5	Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among New World genera. BMC Evolutionary Biology, 2012, 12, 241.	3.2	72
6	Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. Molecular Phylogenetics and Evolution, 2018, 119, 128-143.	2.7	63
7	Metamorphosis shapes cranial diversity and rate of evolution in salamanders. Nature Ecology and Evolution, 2020, 4, 1129-1140.	7.8	58
8	Phylogenomic analyses reveal novel relationships among snake families. Molecular Phylogenetics and Evolution, 2016, 100, 160-169.	2.7	46
9	Climate change, extinction, and Sky Island biogeography in a montane lizard. Molecular Ecology, 2019, 28, 2610-2624.	3.9	40
10	Vanishing refuge? Testing the forest refuge hypothesis in coastal East Africa using genomeâ€wide sequence data for seven amphibians. Molecular Ecology, 2018, 27, 4289-4308.	3.9	37
11	Squeezing water from a stone: high-throughput sequencing from a 145-year old holotype resolves (barely) a cryptic species problem in flying lizards. PeerJ, 2018, 6, e4470.	2.0	36
12	Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes. Evolution; International Journal of Organic Evolution, 2016, 70, 1435-1449.	2.3	33
13	Multilocus molecular phylogenetic analysis of the montane Craugastor podiciferus species complex (Anura: Craugastoridae) in Isthmian Central America. Molecular Phylogenetics and Evolution, 2009, 53, 620-630.	2.7	32
14	Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201393.	2.6	32
15	Causes and analytical impacts of missing data in RADseq phylogenetics: Insights from an African frog (<i>Afrixalus</i>). Zoologica Scripta, 2019, 48, 157-167.	1.7	30
16	Limitations of Climatic Data for Inferring Species Boundaries: Insights from Speckled Rattlesnakes. PLoS ONE, 2015, 10, e0131435.	2.5	29
17	Thousands of microsatellite loci from the venomous coralsnake M icrurus fulvius and variability of select loci across populations and related species. Molecular Ecology Resources, 2012, 12, 1105-1113.	4.8	26
18	Integrative taxonomy at the nexus of population divergence and speciation in insular speckled rattlesnakes. Journal of Natural History, 2018, 52, 989-1016.	0.5	25

#	Article	IF	CITATIONS
19	Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature. Journal of Experimental Biology, 2012, 215, 1137-1143.	1.7	24
20	Xenopus fraseri: Mr. Fraser, where did your frog come from?. PLoS ONE, 2019, 14, e0220892.	2.5	24
21	Inferring introgression using RADseq and <i>D</i> _{FOIL} : Power and pitfalls revealed in a case study of spiny lizards (<i>Sceloporus</i>). Molecular Ecology Resources, 2019, 19, 818-837.	4.8	23
22	Evolutionary relationships amongst polymorphic direct-developing frogs in the <i>Craugastor rhodopis </i> Species Group (Anura: Craugastoridae). Systematics and Biodiversity, 2014, 12, 1-22.	1.2	20
23	Geographical features are the predominant driver of molecular diversification in widely distributed North American whipsnakes. Molecular Ecology, 2017, 26, 5729-5751.	3.9	19
24	Analysis of ultraconserved elements supports African origins of narrow-mouthed frogs. Molecular Phylogenetics and Evolution, 2020, 146, 106771.	2.7	19
25	Rapid range expansion in the Great Plains narrow-mouthed toad (Gastrophryne olivacea) and a revised taxonomy for North American microhylids. Molecular Phylogenetics and Evolution, 2012, 64, 645-653.	2.7	18
26	Target-enriched DNA sequencing from historical type material enables a partial revision of the Madagascar giant stream frogs (genus <i>Mantidactylus</i>). Journal of Natural History, 2020, 54, 87-118.	0.5	16
27	Myxozoan infections of caecilians demonstrate broad host specificity and indicate a link with human activity. International Journal for Parasitology, 2016, 46, 375-381.	3.1	14
28	Eyeâ€body allometry across biphasic ontogeny in anuran amphibians. Evolutionary Ecology, 2021, 35, 337-359.	1.2	14
29	Mitochondrial DNA reveals a new species of parachuting frog (Rhacophoridae: Rhacophorus) from Sumatra. Zootaxa, 2014, 3878, 351-65.	0.5	11
30	The genome sequence of the common frog, Rana temporaria Linnaeus 1758. Wellcome Open Research, 2021, 6, 286.	1.8	11
31	Amphibian taxonomy: early 21st century case studies. Journal of Natural History, 2020, 54, 1-13.	0.5	10
32	Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. Systematics and Biodiversity, 2021, 19, 818-833.	1.2	10
33	The genome sequence of the common toad, Bufo bufo (Linnaeus, 1758). Wellcome Open Research, 2021, 6, 281.	1.8	10
34	Ecology drives patterns of spectral transmission in the ocular lenses of frogs and salamanders. Functional Ecology, 2022, 36, 850-864.	3.6	8
35	Identification and Description of the Tadpole of the Parachuting Frog <i>Rhacophorus catamitus</i> from Southern Sumatra, Indonesia. Journal of Herpetology, 2012, 46, 503-506.	0.5	7
36	Patterns of Genetic Differentiation Among Populations of Smilisca fodiens. Herpetologica, 2012, 68, 226-235.	0.4	7

#	Article	IF	CITATIONS
37	Low levels of genetic diversity among morphologically distinct populations of an enigmatic montane frog from Mexico (Craugastor uno: Craugastoridae). Amphibia - Reptilia, 2011, 32, 125-131.	0.5	5
38	An \tilde{A}_i lise preliminar revela baixos n \tilde{A}_i veis de diversidade na estrutura filogeogr \tilde{A}_i fica da cascavel mexicana Crotalus polystictus (Serpentes: Viperidae) Phyllomedusa, 2012, 11, 3.	0.2	5
39	Microsatellite discovery in an insular amphibian (Grandisonia alternans) with comments on cross-species utility and the accuracy of locus identification from unassembled Illumina data. Conservation Genetics Resources, 2016, 8, 541-551.	0.8	5
40	Report from the First Snake Genomics and Integrative Biology Meeting. Standards in Genomic Sciences, 2012, 7, 150-152.	1.5	4
41	Phylogeography and lineage-specific patterns of genetic diversity and molecular evolution in a group of North American skinks. Biological Journal of the Linnean Society, 2015, 116, 819-833.	1.6	4
42	Integrative taxonomy of squamate reptiles: a special issue. Journal of Natural History, 2018, 52, 767-770.	0.5	4
43	Genomeâ€wide analyses of single nucleotide polymorphisms reveal the consequences of traditional massâ€rearing on genetic variation in Aphytis melinus (Hymenoptera: Aphelinidae): the danger of putting all eggs in one basket. Pest Management Science, 2019, 75, 3102-3112.	3.4	4
44	Two extremely rare new species of fossorial salamanders of the genus <i>Oedipina</i> (Plethodontidae) from northwestern Ecuador. PeerJ, 2020, 8, e9934.	2.0	4
45	A New Salamander of the GenusChiropterotriton(Caudata: Plethodontidae) from the Sierra Madre Oriental of Tamaulipas, Mexico. South American Journal of Herpetology, 2014, 9, 228-234.	0.5	3
46	Molecular insights into the phylogenetic placement of the poorly knownÂgenus Niceforonia Goin & Lochran, 1963 (Anura: Brachycephaloidea). Zootaxa, 2018, 4514, 487.	0.5	3
47	The toad's warts: Discordance creates bumpy expectations of mitochondrialâ€nuclear evolution between species. Molecular Ecology, 2020, 29, 3400-3402.	3.9	3
48	Rediscovery of the Endangered Carchi Andean Toad, Rhaebo colomai (Hoogmoed, 1985), in Ecuador, with comments on its conservation status and extinction risk. Check List, 2019, 15, 415-419.	0.4	3
49	Phoxophrys After 60 Years: Review of Morphology, Phylogeny, Status of Pelturagonia, and a New Species from Southeastern Kalimantan. Herpetological Monographs, 2020, 33, 71.	0.8	3
50	Survival of climate warming through niche shifts: Evidence from frogs on tropical islands. Global Change Biology, 2022, 28, 1268-1286.	9.5	3
51	Morphological Variation in a Polychromatic Population of Chiricahua Leopard Frogs (Lithobates) Tj ETQq1 1 0.784	314 rgBT	/Qverlock 1
52	Miniaturization in Direct-Developing Frogs from Mexico with the Description of Six New Species. Herpetological Monographs, 2022, 36, .	0.8	2
53	The Taxonomic Status ofBufo intermediusGýnther, 1858: Forensic Entomology Confirms What Was Long Suspected from Morphology. Copeia, 2016, 104, 697-701.	1.3	1
54	Spatial and temporal dynamics of exuberant colour polymorphism in the southern cricket frog. Journal of Natural History, 2020, 54, 2249-2264.	0.5	1

 #	Article	IF	CITATIONS
55	Testing the geographical dimensions of genetic diversity following range expansion in a North American snake. Biological Journal of the Linnean Society, 2018, , .	1.6	0

An evaluation of parapatric distributions among ecologically similar rattlesnakes (Viperidae:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To 1.6