Harry L Malech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/418550/publications.pdf

Version: 2024-02-01

73 papers

8,131 citations

35 h-index 74 g-index

78 all docs 78 docs citations

78 times ranked 7893 citing authors

#	Article	IF	CITATIONS
1	Chronic Granulomatous Disease: Report on a National Registry of 368 Patients. Medicine (United) Tj ETQq1 1 0.78	84314 rgB 0.4	T ₁ /Qyerlock 1,403
2	Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine, 2016, 22, 146-153.	15.2	1,088
3	Genetic, Biochemical, and Clinical Features of Chronic Granulomatous Disease. Medicine (United) Tj ETQq1 1 0.78	84314 rgBT 0.4	Dverlock
4	Residual NADPH Oxidase and Survival in Chronic Granulomatous Disease. New England Journal of Medicine, 2010, 363, 2600-2610.	13.9	482
5	Common Severe Infections in Chronic Granulomatous Disease. Clinical Infectious Diseases, 2015, 60, 1176-1183.	2.9	323
6	Treatment of Chronic Granulomatous Disease with Nonmyeloablative Conditioning and a T-Cell–Depleted Hematopoietic Allograft. New England Journal of Medicine, 2001, 344, 881-888.	13.9	265
7	Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease–mediated safe harbor targeting. Blood, 2011, 117, 5561-5572.	0.6	232
8	Chronic granulomatous disease as a risk factor for autoimmune disease. Journal of Allergy and Clinical Immunology, 2008, 122, 1097-1103.	1.5	216
9	CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Science Translational Medicine, 2017, 9, .	5.8	207
10	Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells, Molecules, and Diseases, 2010, 45, 246-265.	0.6	179
11	Lentiviral gene therapy for X-linked chronic granulomatous disease. Nature Medicine, 2020, 26, 200-206.	15.2	175
12	Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnology, 2016, 34, 424-429.	9.4	166
13	Chronic granulomatous disease: Overview and hematopoietic stem cell transplantation. Journal of Allergy and Clinical Immunology, 2011, 127, 1319-1326.	1.5	165
14	X-linked carriers of chronic granulomatous disease: Illness, lyonization, and stability. Journal of Allergy and Clinical Immunology, 2018, 141, 365-371.	1.5	150
15	Hematologically important mutations: The autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells, Molecules, and Diseases, 2010, 44, 291-299.	0.6	143
16	Biochemical Correction of X-CGD by a Novel Chimeric Promoter Regulating High Levels of Transgene Expression in Myeloid Cells. Molecular Therapy, 2011, 19, 122-132.	3.7	141
17	Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nature Communications, 2019, 10, 1634.	5.8	140
18	SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery. Blood, 2018, 132, 1737-1749.	0.6	128

#	Article	IF	CITATIONS
19	Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency. New England Journal of Medicine, 2021, 384, 2002-2013.	13.9	122
20	Inherited p40phox deficiency differs from classic chronic granulomatous disease. Journal of Clinical Investigation, 2018, 128, 3957-3975.	3.9	99
21	Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood, 2013, 121, e98-e107.	0.6	75
22	Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. Journal of Clinical Investigation, 2019, 130, 507-522.	3.9	74
23	Addressing the Value of Gene Therapy and Enhancing Patient Access to Transformative Treatments. Molecular Therapy, 2018, 26, 2717-2726.	3.7	71
24	Location of the Epitope for 7D5, a Monoclonal Antibody Raised against Human Flavocytochrome $\langle i \rangle b < i \rangle < sub > 558 < sub > 500, to the Extracellular Peptide Portion of Primate gp91 < i > csup > phox < sup > classes sub > classes$	0.7	67
25	Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia. Blood Advances, 2020, 4, 2611-2616.	2.5	65
26	An AAVS1-Targeted Minigene Platform for Correction of iPSCs From All Five Types of Chronic Granulomatous Disease. Molecular Therapy, 2015, 23, 147-157.	3.7	63
27	Third-generation, self-inactivating gp91phoxlentivector corrects the oxidase defect in NOD/SCID mouse–repopulating peripheral blood–mobilized CD34+ cells from patients with X-linked chronic granulomatous disease. Blood, 2002, 100, 4381-4390.	0.6	59
28	Gastrointestinal Features of Chronic Granulomatous Disease Found During Endoscopy. Clinical Gastroenterology and Hepatology, 2016, 14, 395-402.e5.	2.4	56
29	Recurrent <i>Granulibacter bethesdensis</i> Infections and Chronic Granulomatous Disease. Emerging Infectious Diseases, 2010, 16, 1341-1348.	2.0	54
30	Allogeneic Reduced-Intensity Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease: a Single-Center Prospective Trial. Journal of Clinical Immunology, 2017, 37, 548-558.	2.0	52
31	Enhanced homology-directed repair for highly efficient gene editing in hematopoietic stem/progenitor cells. Blood, 2021, 137, 2598-2608.	0.6	51
32	Targeted Repair of CYBB in X-CGD iPSCs Requires Retention of Intronic Sequences for Expression and Functional Correction. Molecular Therapy, 2017, 25, 321-330.	3.7	45
33	Genetic Risk for Inflammatory Bowel Disease Is a Determinant of Crohn $\hat{E}^{1}/4$ s Disease Development in Chronic Granulomatous Disease. Inflammatory Bowel Diseases, 2016, 22, 2794-2801.	0.9	41
34	Chronic Granulomatous Disease-Associated IBD Resolves and Does Not Adversely Impact Survival Following Allogeneic HCT. Journal of Clinical Immunology, 2019, 39, 653-667.	2.0	41
35	The Role of Neutrophils in the Immune System: An Overview. Methods in Molecular Biology, 2020, 2087, 3-10.	0.4	40
36	Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease. Blood Advances, 2017, 1, 270-278.	2.5	39

3

#	Article	IF	Citations
37	Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Therapy, 2021, 28, 373-390.	2.3	39
38	Mutational analysis of patients with p47-phox–deficient chronic granulomatous disease. Experimental Hematology, 2001, 29, 234-243.	0.2	37
39	Haploidentical Hematopoietic Cell Transplantation with Post-Transplant Cyclophosphamide in a Patient with Chronic Granulomatous Disease and Active Infection: A First Report. Journal of Clinical Immunology, 2015, 35, 675-680.	2.0	36
40	Granulocyte transfusions in patients with chronic granulomatous disease and refractory infections: The NIH experience. Journal of Allergy and Clinical Immunology, 2017, 140, 622-625.	1.5	35
41	Aberrant Clonal Hematopoiesis following Lentiviral Vector Transduction of HSPCs in a Rhesus Macaque. Molecular Therapy, 2019, 27, 1074-1086.	3.7	34
42	Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment. Molecular Therapy, 2018, 26, 1181-1197.	3.7	32
43	Assessment of Atherosclerosis in Chronic Granulomatous Disease. Circulation, 2014, 130, 2031-2039.	1.6	30
44	Prospective Study of a Novel, Radiation-Free, Reduced-Intensity Bone Marrow Transplantation Platform for Primary Immunodeficiency Diseases. Biology of Blood and Marrow Transplantation, 2020, 26, 94-106.	2.0	28
45	Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood, 2021, 138, 1304-1316.	0.6	28
46	Gene Editing Rescues In vitro T Cell Development of RAG2-Deficient Induced Pluripotent Stem Cells in an Artificial Thymic Organoid System. Journal of Clinical Immunology, 2021, 41, 852-862.	2.0	27
47	Future of Care for Patients With Chronic Granulomatous Disease: Gene Therapy and Targeted Molecular Medicine. Journal of the Pediatric Infectious Diseases Society, 2018, 7, S40-S44.	0.6	22
48	Hematologically important mutations: X-linked chronic granulomatous disease (fourth update). Blood Cells, Molecules, and Diseases, 2021, 90, 102587.	0.6	22
49	Hematologically important mutations: The autosomal forms of chronic granulomatous disease (third) Tj ETQq $1\ 1$	0.784314	f rgBT /Overl
50	NCF1 (p47phox)–deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood Advances, 2019, 3, 136-147.	2.5	20
51	CRISPR-targeted <i>MAGT1</i> insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood, 2021, 138, 2768-2780.	0.6	20
52	Failure to Prevent Severe Graft-Versus-Host Disease in Haploidentical Hematopoietic Cell Transplantation with Post-Transplant Cyclophosphamide in Chronic Granulomatous Disease. Journal of Clinical Immunology, 2020, 40, 619-624.	2.0	19
53	Lentivector cryptic splicing mediates increase in CD34+ clones expressing truncated HMGA2 in human X-linked severe combined immunodeficiency. Nature Communications, 2022, 13, .	5.8	19
54	Homozygous <i>IL37</i> mutation associated with infantile inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17

#	Article	IF	Citations
55	Generation of Functionally Mature Neutrophils from Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2014, 1124, 189-206.	0.4	17
56	Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Reports Medicine, 2021, 2, 100247.	3.3	15
57	Innate Immunity against Granulibacter bethesdensis, an Emerging Gram-Negative Bacterial Pathogen. Infection and Immunity, 2012, 80, 975-981.	1.0	14
58	CRISPR-Mediated Knockout of <i>Cybb < /i>in NSG Mice Establishes a Model of Chronic Granulomatous Disease for Human Stem-Cell Gene Therapy Transplants. Human Gene Therapy, 2017, 28, 565-575.</i>	1.4	11
59	Treatment by CRISPR-Cas9 Gene Editing — A Proof of Principle. New England Journal of Medicine, 2021, 384, 286-287.	13.9	8
60	MAGT1 messenger RNA-corrected autologous T and natural killer cells for potential cell therapy in X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia disease. Cytotherapy, 2021, 23, 203-210.	0.3	7
61	Serologic Reactivity to the Emerging Pathogen Granulibacter bethesdensis. Journal of Infectious Diseases, 2012, 206, 943-951.	1.9	6
62	Gene Editing in Chronic Granulomatous Disease. Methods in Molecular Biology, 2019, 1982, 623-665.	0.4	6
63	Progressive B Cell Loss in Revertant X-SCID. Journal of Clinical Immunology, 2020, 40, 1001-1009.	2.0	5
64	NADPH oxidase correction by mRNA transfection of apheresis granulocytes in chronic granulomatous disease. Blood Advances, 2020, 4, 5976-5987.	2.5	4
65	Granulibacter bethesdensis, a Pathogen from Patients with Chronic Granulomatous Disease, Produces a Penta-Acylated Hypostimulatory Glycero-D-talo-oct-2-ulosonic Acid–Lipid A Glycolipid (Ko-Lipid A). International Journal of Molecular Sciences, 2021, 22, 3303.	1.8	4
66	Homozygous variant p. Arg90His in NCF1 is associated with early-onset Interferonopathy: a case report. Pediatric Rheumatology, 2021, 19, 54.	0.9	4
67	Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47 ^{phox} -Deficient Chronic Granulomatous Disease. Human Gene Therapy, 2021, 32, 949-958.	1.4	4
68	Granulocyte Transfusions in Patients with Chronic Granulomatous Disease Undergoing Hematopoietic Cell Transplantation or Gene Therapy. Journal of Clinical Immunology, 2022, 42, 1026-1035.	2.0	3
69	Preclinical Evaluation for Engraftment of Gene-Edited CD34+ Cells with a Sickle Cell Disease Mutation in a Rhesus Transplantation Model. Blood, 2019, 134, 609-609.	0.6	2
70	JAGN1 mutations in severe congenital neutropenia. British Journal of Haematology, 2021, 192, 9-10.	1,2	1
71	Low Plasma Gelsolin Concentrations in Chronic Granulomatous Disease. Inflammation, 2021, 44, 270-277.	1.7	1
72	Gene Editing and mRNA-Based Therapy: Two Complementary Therapeutic Approaches for the Treatment of Patients with Xmen Disease. Blood, 2019, 134, 4637-4637.	0.6	0

#	Article	IF	CITATIONS
73	Febrile neutropenia management and outcomes in hematopoietic cell transplantation for chronic granulomatous disease. Transplant Infectious Disease, 2022, 24, .	0.7	0