List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuronal regulation of glucagon secretion and gluconeogenesis. Journal of Diabetes Investigation, 2022, 13, 599-607.	1.1	7
2	Hypothalamic Irak4 is a genetically controlled regulator of hypoglycemia-induced glucagon secretion. Molecular Metabolism, 2022, 61, 101479.	3.0	6
3	Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nature Communications, 2022, 13, 1783.	5.8	12
4	Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse. Cells, 2022, 11, 1737.	1.8	5
5	Cold-induced dishabituation in rodents exposed to recurrent hypoglycaemia. Diabetologia, 2021, 64, 1436-1441.	2.9	4
6	Fgf15 Neurons of the Dorsomedial Hypothalamus Control Glucagon Secretion and Hepatic Gluconeogenesis. Diabetes, 2021, 70, 1443-1457.	0.3	15
7	Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study. Diabetologia, 2021, 64, 1982-1989.	2.9	44
8	Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nature Metabolism, 2021, 3, 1017-1031.	5.1	76
9	Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes: An IMI-RHAPSODY Study. Diabetes, 2021, 70, 2683-2693.	0.3	26
10	Détection cérébrale du glucose et homéostasie du glucose. Medecine Des Maladies Metaboliques, 2021 15, 518-525.	0.1	0
11	Mike Mueckler (1953–2021): the father of the mammalian SLC2 glucose transporter family. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E490-E492.	1.8	0
12	Glucokinase neurons of the paraventricular nucleus of the thalamus sense glucose and decrease food consumption. IScience, 2021, 24, 103122.	1.9	11
13	Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Molecular Metabolism, 2021, 53, 101311.	3.0	15
14	Plasma triacylglycerols are biomarkers of β-cell function in mice and humans. Molecular Metabolism, 2021, 54, 101355.	3.0	17
15	Persistent or Transient Human Î ² Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Reports, 2020, 33, 108466.	2.9	65
16	Hypoglycemia-Sensing Neurons of the Ventromedial Hypothalamus Require AMPK-Induced Txn2 Expression but Are Dispensable for Physiological Counterregulation. Diabetes, 2020, 69, 2253-2266.	0.3	19
17	Klf6 protects β-cells against insulin resistance-induced dedifferentiation. Molecular Metabolism, 2020, 35, 100958.	3.0	12
18	A genetic screen identifies Crat as a regulator of pancreatic beta-cell insulin secretion. Molecular Metabolism, 2020, 37, 100993.	3.0	4

#	Article	IF	CITATIONS
19	EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis. PLoS Biology, 2020, 18, e3000680.	2.6	8
20	Title is missing!. , 2020, 18, e3000680.		0
21	Title is missing!. , 2020, 18, e3000680.		0
22	Title is missing!. , 2020, 18, e3000680.		0
23	Title is missing!. , 2020, 18, e3000680.		0
24	Title is missing!. , 2020, 18, e3000680.		0
25	Title is missing!. , 2020, 18, e3000680.		Ο
26	Use of preclinical models to identify markers of type 2 diabetes susceptibility and novel regulators of insulin secretion – A step towards precision medicine. Molecular Metabolism, 2019, 27, S147-S154.	3.0	11
27	Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes. Molecular Metabolism, 2019, 24, 98-107.	3.0	26
28	Targeting the Brain to Cure Type 2 Diabetes. Diabetes, 2019, 68, 476-478.	0.3	1
29	Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1725-1736.	2.4	5
30	α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nature Communications, 2018, 9, 546.	5.8	72
31	Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia, 2018, 61, 641-657.	2.9	131
32	GLUT2-Expressing Neurons as Glucose Sensors in the Brain: Electrophysiological Analysis. Methods in Molecular Biology, 2018, 1713, 255-267.	0.4	6
33	Protective role of the ELOVL2/docosahexaenoic acid axis in glucolipotoxicity-induced apoptosis in rodent beta cells and human islets. Diabetologia, 2018, 61, 1780-1793.	2.9	32
34	Postprandial macrophage-derived IL-1Î ² stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nature Immunology, 2017, 18, 283-292.	7.0	286
35	Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans. Cell Reports, 2017, 18, 2269-2279.	2.9	168
36	Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Molecular Metabolism, 2017, 6, 340-351.	3.0	42

#	Article	IF	CITATIONS
37	Alain Ktorza, PhD. Diabetes, Obesity and Metabolism, 2017, 19, 3-3.	2.2	Ο
38	A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion. Cell Reports, 2016, 17, 1795-1806.	2.9	26
39	Sex-Specific Control of Fat Mass and Counterregulation by Hypothalamic Glucokinase. Diabetes, 2016, 65, 2920-2931.	0.3	20
40	Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior. Nature Neuroscience, 2016, 19, 999-1002.	7.1	108
41	Clic4, a novel protein that sensitizes β-cells to apoptosis. Molecular Metabolism, 2015, 4, 253-264.	3.0	20
42	Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nature Medicine, 2015, 21, 363-372.	15.2	126
43	Brain glucose sensing in homeostatic and hedonic regulation. Trends in Endocrinology and Metabolism, 2015, 26, 455-466.	3.1	66
44	Autocrine Action of IGF2 Regulates Adult \hat{l}^2 -Cell Mass and Function. Diabetes, 2015, 64, 4148-4157.	0.3	46
45	Ins1 Cre knock-in mice for beta cell-specific gene recombination. Diabetologia, 2015, 58, 558-565.	2.9	182
46	GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 2015, 58, 221-232.	2.9	499
47	Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Human Molecular Genetics, 2015, 24, 1390-1399.	1.4	89
48	Gluco-Incretins Regulate Beta-Cell Glucose Competence by Epigenetic Silencing of Fxyd3 Expression. PLoS ONE, 2014, 9, e103277.	1.1	12
49	Glutamine Stimulates Biosynthesis and Secretion of Insulin-like Growth Factor 2 (IGF2), an Autocrine Regulator of Beta Cell Mass and Function. Journal of Biological Chemistry, 2014, 289, 31972-31982.	1.6	31
50	Hypoglycemia-Activated GLUT2 Neurons of the Nucleus Tractus Solitarius Stimulate Vagal Activity and Glucagon Secretion. Cell Metabolism, 2014, 19, 527-538.	7.2	114
51	Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis. Journal of Clinical Investigation, 2014, 124, 413-424.	3.9	62
52	The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine, 2013, 34, 121-138.	2.7	934
53	The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Molecular Metabolism, 2013, 2, 47-53.	3.0	99
54	The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids. Cell Reports, 2013, 5, 248-258.	2.9	45

#	Article	IF	CITATIONS
55	Hepatic glucose sensing is required to preserve β cell glucose competence. Journal of Clinical Investigation, 2013, 123, 1662-1676.	3.9	118
56	MicroRNAs contribute to compensatory \hat{l}^2 cell expansion during pregnancy and obesity. Journal of Clinical Investigation, 2012, 122, 3541-3551.	3.9	148
57	Sensing of Glucose in the Brain. Handbook of Experimental Pharmacology, 2012, , 277-294.	0.9	66
58	Plac8 is required for White Adipocyte Differentiation in vitro and Cell Number Control in vivo. PLoS ONE, 2012, 7, e48767.	1.1	28
59	Of Fat, β Cells, and Diabetes. Cell Metabolism, 2011, 14, 439-440.	7.2	11
60	Oxidative Phosphorylation Flexibility in the Liver of Mice Resistant to High-Fat Diet–Induced Hepatic Steatosis. Diabetes, 2011, 60, 2216-2224.	0.3	30
61	In Vivo Conditional Pax4 Overexpression in Mature Islet β-Cells Prevents Stress-Induced Hyperglycemia in Mice. Diabetes, 2011, 60, 1705-1715.	0.3	45
62	Peroxisomal and Microsomal Lipid Pathways Associated with Resistance to Hepatic Steatosis and Reduced Pro-inflammatory State. Journal of Biological Chemistry, 2010, 285, 31011-31023.	1.6	63
63	Glut2â€dependent glucoseâ€sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB Journal, 2010, 24, 1747-1758.	0.2	69
64	Glucagon-like Peptide-1 Increases β-Cell Glucose Competence and Proliferation by Translational Induction of Insulin-like Growth Factor-1 Receptor Expression. Journal of Biological Chemistry, 2010, 285, 10538-10545.	1.6	77
65	Glucose transporters in the 21st Century. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E141-E145.	1.8	746
66	GLP-1 protects Î ² -cells against apoptosis by enhancing the activity of an IGF-2/IGF1-receptor autocrine loop. Islets, 2009, 1, 280-282.	0.9	26
67	Glucagon-Like Peptide-1 Protects β-Cells Against Apoptosis by Increasing the Activity of an Igf-2/Igf-1 Receptor Autocrine Loop. Diabetes, 2009, 58, 1816-1825.	0.3	118
68	Increasing GLP-1–Induced β-Cell Proliferation by Silencing the Negative Regulators of Signaling cAMP Response Element Modulator-α and DUSP14. Diabetes, 2008, 57, 584-593.	0.3	79
69	Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. Journal of Lipid Research, 2008, 49, 2038-2044.	2.0	136
70	Different Transcriptional Control of Metabolism and Extracellular Matrix in Visceral and Subcutaneous Fat of Obese and Rimonabant Treated Mice. PLoS ONE, 2008, 3, e3385.	1.1	20
71	Brain Glucose Sensing, Counterregulation, and Energy Homeostasis. Physiology, 2007, 22, 241-251.	1.6	273
72	Development and preclinical assessment of a bioartificial pancreas. Swiss Medical Weekly, 2007, 137 Suppl 155, 68S-71S.	0.8	1

#	Article	IF	CITATIONS
73	Evidence From Glut2-Null Mice That Glucose Is a Critical Physiological Regulator of Feeding. Diabetes, 2006, 55, 988-995.	0.3	117
74	A missing sugar prevents glucose entry: A new twist on insulin secretion. Cell Metabolism, 2006, 3, 3-5.	7.2	7
75	A Toggle for Type 2 Diabetes?. New England Journal of Medicine, 2006, 354, 1636-1638.	13.9	11
76	Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Journal of Clinical Investigation, 2005, 115, 3545-3553.	3.9	203
77	Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO Journal, 2004, 23, 531-540.	3.5	60
78	Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain—an immunohistochemical study. Journal of Chemical Neuroanatomy, 2004, 28, 117-136.	1.0	130
79	Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. Journal of Chemical Neuroanatomy, 2004, 28, 137-146.	1.0	82
80	Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 471-478.	1.3	65
81	Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. Journal of Clinical Investigation, 2004, 113, 635-645.	3.9	201
82	Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. Journal of Clinical Investigation, 2004, 113, 635-645.	3.9	104
83	A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis. Pflugers Archiv European Journal of Physiology, 2003, 445, 482-490.	1.3	27
84	The facilitative glucose transporter 2: pathophysiological role in mouse and human. , 2003, , 175-190.		4
85	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	3.9	50
86	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	3.9	31
87	Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E834-E842.	1.8	246
88	Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E794-E801.	1.8	37
89	GLUT2 is a high affinity glucosamine transporter. FEBS Letters, 2002, 524, 199-203.	1.3	247
90	The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Molecular Membrane Biology, 2001, 18, 247-256.	2.0	583

#	Article	IF	CITATIONS
91	GLUT2 in pancreatic and extra-pancreatic gluco-detection. Molecular Membrane Biology, 2001, 18, 265-273.	2.0	96
92	Evidence That Extrapancreatic GLUT2-Dependent Glucose Sensors Control Glucagon Secretion. Diabetes, 2001, 50, 1282-1289.	0.3	68
93	Engineering Tolerance into Transplanted β Cell Lines. Annals of the New York Academy of Sciences, 2001, 944, 267-270.	1.8	2
94	Transgenic Reexpression of GLUT1 or GLUT2 in Pancreatic Î ² Cells Rescues GLUT2-null Mice from Early Death and Restores Normal Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2000, 275, 23751-23758.	1.6	170
95	Liver Hyperplasia and Paradoxical Regulation of Glycogen Metabolism and Glucose-sensitive Gene Expression in GLUT2-null Hepatocytes. Journal of Biological Chemistry, 2000, 275, 10930-10936.	1.6	72
96	Encapsulated, Genetically Engineered Cells, Secreting Glucagonâ€like Peptideâ€1 for the Treatment of Nonâ€insulinâ€dependent Diabetes Mellitus. Annals of the New York Academy of Sciences, 1999, 875, 277-285.	1.8	32
97	Dexamethasone Induces Posttranslational Degradation of GLUT2 and Inhibition of Insulin Secretion in Isolated Pancreatic β Cells. Journal of Biological Chemistry, 1997, 272, 3216-3222.	1.6	131
98	Fatty Acids Decrease IDX-1 Expression in Rat Pancreatic Islets and Reduce GLUT2, Glucokinase, Insulin, and Somatostatin Levels. Journal of Biological Chemistry, 1997, 272, 30261-30269.	1.6	242
99	Inhibition of glucose-induced insulin secretion by long-term preexposure of pancreatic islets to leptin. FEBS Letters, 1997, 415, 179-182.	1.3	44
100	Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Clut-2. Nature Genetics, 1997, 17, 327-330.	9.4	385
101	Expression of the Glucagonâ€Like Peptideâ€1 Receptor Gene in Rat Brain. Journal of Neurochemistry, 1996, 66, 920-927.	2.1	160
102	Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell, 1988, 55, 281-290.	13.5	831