
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of the Total Environment, 2022, 832, 155116.	8.0	26
2	Grass Shrimp (<i>Palaemonetes pugio</i>) as a Trophic Link for Methylmercury Accumulation in Urban Salt Marshes. Environmental Science & Technology, 2022, , .	10.0	1
3	Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei. Science of the Total Environment, 2021, 764, 144279.	8.0	12
4	Rapid Attainment of Isotopic Equilibrium after Mercury Reduction by Ferrous Iron Minerals and Isotopic Exchange between Hg(II) and Hg(0). ACS Earth and Space Chemistry, 2021, 5, 1384-1394.	2.7	5
5	Bluefin tuna reveal global patterns of mercury pollution and bioavailability in the world's oceans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
6	Improved extraction of acid-insoluble monosulfide minerals by stannous chloride reduction and its application to the separation of mono- and disulfide minerals in the presence of ferric iron. Science of the Total Environment, 2021, 785, 147367.	8.0	2
7	Comparative physiological and transcriptomic analyses illuminate common mechanisms by which silicon alleviates cadmium and arsenic toxicity in rice seedlings. Journal of Environmental Sciences, 2021, 109, 88-101.	6.1	36
8	Mass-Independent Fractionation of Mercury Isotopes during Photoreduction of Soot Particle Bound Hg(II). Environmental Science & Technology, 2021, 55, 13783-13791.	10.0	10
9	Variation in the mercury concentration and stable isotope composition of atmospheric total suspended particles in Beijing, China. Journal of Hazardous Materials, 2020, 383, 121131.	12.4	12
10	Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME Journal, 2020, 14, 335-346.	9.8	62
11	Enrichment of calcium in sea spray aerosol in the Arctic summer atmosphere. Marine Chemistry, 2020, 227, 103898.	2.3	8
12	Extracellular Electron Shuttling Mediated by Soluble <i>c</i> -Type Cytochromes Produced by <i>Shewanella oneidensis</i> MR-1. Environmental Science & Technology, 2020, 54, 10577-10587.	10.0	61
13	Production of methylmercury by methanogens in mercury contaminated estuarine sediments. FEMS Microbiology Letters, 2020, 367, .	1.8	11
14	Mercury Isotope Fractionation during the Photochemical Reduction of Hg(II) Coordinated with Organic Ligands. Journal of Physical Chemistry A, 2020, 124, 2842-2853.	2.5	51
15	Spatiotemporal Variations in Dissolved Elemental Mercury in the River-Dominated and Monsoon-Influenced East China Sea: Drivers, Budgets, and Implications. Environmental Science & Technology, 2020, 54, 3988-3995.	10.0	10
16	Tracing the Uptake of Hg(II) in an Iron-Reducing Bacterium Using Mercury Stable Isotopes. Environmental Science and Technology Letters, 2020, 7, 573-578.	8.7	15
17	High-resolution LA-ICP-MS mapping of deep-sea polymetallic micronodules and its implications on element mobility. Gondwana Research, 2020, 81, 461-474.	6.0	26
18	Size Scaling of Contaminant Trace Metal Accumulation in the Infaunal Marine Clam Amiantis umbonella. Archives of Environmental Contamination and Toxicology, 2019, 77, 368-376.	4.1	1

JOHN R REINFELDER

#	Article	IF	CITATIONS
19	Reductive dissolution of jarosite by a sulfate reducing bacterial community: Secondary mineralization and microflora development. Science of the Total Environment, 2019, 690, 1100-1109.	8.0	37
20	Isotopic fingerprints indicate distinct strategies of Fe uptake in rice. Chemical Geology, 2019, 524, 323-328.	3.3	15
21	Factors Controlling Seasonal Phytoplankton Dynamics in the Delaware River Estuary: an Idealized Model Study. Estuaries and Coasts, 2019, 42, 1839-1857.	2.2	20
22	Diel variation in mercury stable isotope ratios records photoreduction of PM _{2.5} -bound mercury. Atmospheric Chemistry and Physics, 2019, 19, 315-325.	4.9	34
23	The behavior of chromium and arsenic associated with redox transformation of schwertmannite in AMD environment. Chemosphere, 2019, 222, 945-953.	8.2	54
24	Patterns of total mercury and methylmercury bioaccumulation in Antarctic krill (Euphausia superba) along the West Antarctic Peninsula. Science of the Total Environment, 2019, 688, 174-183.	8.0	21
25	Tracking legacy mercury in the Hackensack River estuary using mercury stable isotopes. Journal of Hazardous Materials, 2019, 375, 121-129.	12.4	24
26	Elucidation of desferrioxamine B on the liberation of chromium from schwertmannite. Chemical Geology, 2019, 513, 133-142.	3.3	11
27	A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root. Science of the Total Environment, 2019, 666, 445-460.	8.0	67
28	Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Journal of Environmental Sciences, 2019, 80, 218-228.	6.1	20
29	Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors. Environmental Science and Pollution Research, 2019, 26, 617-627.	5.3	19
30	Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite. Environmental Science and Pollution Research, 2018, 25, 15492-15506.	5.3	9
31	Syntrophic pathways for microbial mercury methylation. ISME Journal, 2018, 12, 1826-1835.	9.8	71
32	Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2018, 2, 432-440.	2.7	58
33	Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem. Science of the Total Environment, 2018, 616-617, 107-116.	8.0	93
34	Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture. Environmental Pollution, 2018, 242, 738-748.	7.5	20
35	Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochimica Acta, 2017, 239, 25-35.	5.2	61
36	Long-term Stability of Trace Element Concentrations in a Spontaneously Vegetated Urban Brownfield With Anthropogenic Soils. Soil Science, 2017, 182, 69-81.	0.9	14

#	Article	IF	CITATIONS
37	Fulvic acid induced the liberation of chromium from CrO42â^'-substituted schwertmannite. Chemical Geology, 2017, 475, 52-61.	3.3	40
38	Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria. Environmental Science & Technology, 2016, 50, 8077-8083.	10.0	87
39	Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China. Geoderma, 2016, 281, 21-29.	5.1	33
40	Co-selection of Mercury and Multiple Antibiotic Resistances in Bacteria Exposed to Mercury in the Fundulus heteroclitus Gut Microbiome. Current Microbiology, 2016, 73, 834-842.	2.2	24
41	The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation, 2016, 27, 29-36.	3.0	19
42	Separation of monomethylmercury from estuarine sediments for mercury isotope analysis. Chemical Geology, 2015, 411, 19-25.	3.3	42
43	The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS ONE, 2015, 10, e0138333.	2.5	30
44	Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chemical Geology, 2014, 363, 334-340.	3.3	50
45	Low <scp>CO</scp> ₂ results in a rearrangement of carbon metabolism to support C ₄ photosynthetic carbon assimilation in <i>Thalassiosira pseudonana</i> . New Phytologist, 2014, 204, 507-520.	7.3	67
46	Relative Importance of Burrow Sediment and Porewater to the Accumulation of Trace Metals in the Clam Amiantis umbonella. Archives of Environmental Contamination and Toxicology, 2013, 65, 89-97.	4.1	11
47	Ancient algae crossed a threshold. Nature, 2013, 500, 532-533.	27.8	3
48	Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochimica Et Cosmochimica Acta, 2013, 112, 166-177.	3.9	97
49	Mercury Methylation by the Methanogen Methanospirillum hungatei. Applied and Environmental Microbiology, 2013, 79, 6325-6330.	3.1	119
50	Phytoplankton productivity in a turbid buoyant coastal plume. Continental Shelf Research, 2013, 63, S138-S148.	1.8	11
51	Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions. Chemical Geology, 2013, 336, 13-25.	3.3	63
52	The Microbial Community of a Black Shale Pyrite Biofilm and its Implications for Pyrite Weathering. Geomicrobiology Journal, 2012, 29, 186-193.	2.0	10
53	Metal Concentrations in Organs of the Clam Amiantis umbonella and Their Use in Monitoring Metal Contamination of Coastal Sediments. Water, Air, and Soil Pollution, 2012, 223, 2125-2136.	2.4	20
54	Carbon dioxide regulation of nitrogen and phosphorus in four species of marine phytoplankton. Marine Ecology - Progress Series, 2012, 466, 57-67.	1.9	30

#	Article	IF	CITATIONS
55	Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton. Annual Review of Marine Science, 2011, 3, 291-315.	11.6	445
56	The influence of river plume dynamics on trace metal accumulation in calanoid copepods. Limnology and Oceanography, 2010, 55, 2487-2502.	3.1	10
57	Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnology and Oceanography, 2009, 54, 41-49.	3.1	27
58	Mercury volatilization from salt marsh sediments. Journal of Geophysical Research, 2009, 114, .	3.3	17
59	Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochimica Et Cosmochimica Acta, 2008, 72, 5243-5250.	3.9	46
60	Arsenic Transformation and Mobilization from Minerals by the Arsenite Oxidizing Strain WAO. Environmental Science & Technology, 2008, 42, 1423-1429.	10.0	44
61	Biological Responses in a Dynamic Buoyant River Plume. Oceanography, 2008, 21, 70-89.	1.0	29
62	Mercury Speciation, Reactivity, and Bioavailability in a Highly Contaminated Estuary, Berry's Creek, New Jersey Meadowlands. Environmental Science & Technology, 2007, 41, 8268-8274.	10.0	29
63	Localization and Role of Manganese Superoxide Dismutase in a Marine Diatom. Plant Physiology, 2006, 142, 1701-1709.	4.8	82
64	Irradiance and the elemental stoichiometry of marine phytoplankton. Limnology and Oceanography, 2006, 51, 2690-2701.	3.1	100
65	Copper uptake kinetics in diverse marine phytoplankton. Limnology and Oceanography, 2006, 51, 893-899.	3.1	69
66	Opening a Window to the Sea: The Potential of the Ocean Observatories for Education. , 2006, , .		1
67	Coastal Ocean Observatories Enable Biological Investigations in a Buoyant Plume. , 2006, , .		2
68	Atmospheric Concentrations and Deposition of Polycyclic Aromatic Hydrocarbons to the Mid-Atlantic East Coast Region. Environmental Science & Technology, 2005, 39, 5550-5559.	10.0	89
69	Mercury Emissions from Cement-Stabilized Dredged Material. Environmental Science & Technology, 2005, 39, 8185-8190.	10.0	14
70	The Role of the C4 Pathway in Carbon Accumulation and Fixation in a Marine Diatom. Plant Physiology, 2004, 135, 2106-2111.	4.8	161
71	Atmospheric Wet Deposition of Total Phosphorus in New Jersey. Water, Air, and Soil Pollution, 2004, 154, 139-150.	2.4	20
72	Atmospheric Concentrations and Deposition of Polychorinated Biphenyls to the Hudson River Estuary. Environmental Science & amp; Technology, 2004, 38, 2568-2573.	10.0	70

#	Article	IF	CITATIONS
73	Role of the Bacterial Organomercury Lyase (MerB) in Controlling Methylmercury Accumulation in Mercury-Contaminated Natural Waters. Environmental Science & Technology, 2004, 38, 4304-4311.	10.0	178
74	The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 2003, 425, 291-294.	27.8	481
75	Phenanthrene Accumulation Kinetics in Marine Diatoms. Environmental Science & Technology, 2003, 37, 3405-3412.	10.0	55
76	2004 ASLO AWARD NOMINATIONS. Limnology and Oceanography Bulletin, 2003, 12, 66-66.	0.4	0
77	Relative importance of dissolved versus trophic bioaccumulation of copper in marine copepods. Marine Ecology - Progress Series, 2002, 231, 179-186.	1.9	38
78	2003 ASLO AWARD NOMINATIONS. Limnology and Oceanography Bulletin, 2002, 11, 53-54.	0.4	0
79	Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Functional Plant Biology, 2002, 29, 301.	2.1	85
80	Photosynthesis in a marine diatom. Nature, 2001, 412, 41-41.	27.8	4
81	Metabolic responses to subacute toxicity of trace metals in a marine microalga (Thalassiosira) Tj ETQq1 1 0.784	314 rgBT / 4.3	Overlock 10 T
82	Unicellular C4 photosynthesis in a marine diatom. Nature, 2000, 407, 996-999.	27.8	327
83	Bioaccumulation, Subcellular Distribution, and Trophic Transfer of Copper in a Coastal Marine Diatom. Environmental Science & Technology, 2000, 34, 4931-4935.	10.0	65
84	METABOLIC RESPONSES TO SUBACUTE TOXICITY OF TRACE METALS IN A MARINE MICROALGA (THALASSIOSIRA WEISSFLOGII)MEASURED BY CALORESPIROMETRY. Environmental Toxicology and Chemistry, 2000, 19, 448.	4.3	4
85	Speciation and Microalgal Bioavailability of Inorganic Silver. Environmental Science & Technology, 1999, 33, 1860-1863.	10.0	78
86	Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach. Science of the Total Environment, 1998, 219, 117-135.	8.0	317
87	Active uptake of bicarbonate by diatoms. Nature, 1997, 390, 243-244.	27.8	155
88	Assimilation efficiencies and turnover rates of trace elements in marine bivalves: a comparison of oysters, clams and mussels. Marine Biology, 1997, 129, 443-452.	1.5	133
89	Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environmental Science & Technology, 1996, 30, 1835-1845.	10.0	571
90	Assimilation and regeneration of trace elements by marine copepods. Limnology and Oceanography, 1996, 41, 70-81.	3.1	75

#	Article	IF	CITATIONS
91	Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution, 1995, 80, 915-921.	2.4	346
92	Growth limits on phytoplankton. Nature, 1995, 373, 28-28.	27.8	7
93	Zinc and carbon co-limitation of marine phytoplankton. Nature, 1994, 369, 740-742.	27.8	462
94	Retention of elements absorbed by juvenile fish (Menidia menidia, Menidia beryllina) from zooplankton prey. Limnology and Oceanography, 1994, 39, 1783-1789.	3.1	103
95	The assimilation ofelements ingested by marine planktonic bivalve larvae. Limnology and Oceanography, 1994, 39, 12-20.	3.1	75
96	Release rates of trace elements and protein from decomposing planktonic debris. 2. Copepod carcasses and sediment trap particulate matter. Journal of Marine Research, 1993, 51, 423-442.	0.3	31
97	Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environmental Science & Technology, 1992, 26, 485-491.	10.0	237
98	The Assimilation of Elements Ingested by Marine Copepods. Science, 1991, 251, 794-796.	12.6	347
99	Assimilation of selenium in the marine copepod Acartia tonsa studied with a radiotracer ratio method. Marine Ecology - Progress Series, 1991, 70, 157-164.	1.9	43