Raana Sarvari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4185129/publications.pdf Version: 2024-02-01

RAANA SADVADI

#	Article	IF	CITATIONS
1	Organic/polymeric antibiofilm coatings for surface modification of medical devices. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 867-908.	3.4	1
2	A summary on non-viral systems for gene delivery based on natural and synthetic polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 246-265.	3.4	26
3	Shape-memory materials and their clinical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 315-335.	3.4	17
4	A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds. Journal of Materials Science: Materials in Medicine, 2022, 33, 32.	3.6	9
5	Will stem cells from fat and growth factors from blood bring new hope to female patients with reproductive disorders?. Reproductive Biology, 2021, 21, 100472.	1.9	2
6	Porous conductive and biocompatible scaffolds on the basis of polycaprolactone and polythiophene for scaffolding. Polymer Bulletin, 2020, 77, 1829-1846.	3.3	14
7	Liver tissue engineering via hyperbranched polypyrrole scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1112-1122.	3.4	13
8	Synthesis and characterization of electroactive bottlebrush nano-copolymers based on polystyrene and polyaniline as side chains and poly(3-(2-hydroxyethyl)thiophene) as backbone. Polymer Bulletin, 2020, 77, 3707-3724.	3.3	3
9	Electroactive polythiophene/polystyrene bottlebrushes as morphology compatibilizers in photovoltaic systems. Polymer International, 2020, 69, 397-403.	3.1	1
10	Novel conjugated patterns of PBDTâ€ÐTNT and PBDTâ€TIPSâ€ÐTNTâ€ÐT complicated polymers onto graphenic nanosheets. Polymer International, 2019, 68, 64-70.	3.1	4
11	Coâ€delivery of methotrexate and doxorubicin via nanocarriers of starâ€like poly(DMAEMAâ€blockâ€HEMAâ€blockâ€AAc) terpolymers. Polymer International, 2019, 68, 1795-1803.	3.1	8
12	pH-responsive nanosystems based on reduced graphene oxide grafted with polycaprolactone-block-poly(succinyloxyethylmethacrylate) for doxorubicin release. Journal of the Iranian Chemical Society, 2019, 16, 2031-2043.	2.2	7
13	Towards skin tissue engineering using poly(2-hydroxy ethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 272 To terpolymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 691-700	l (methac 3.4	rylate)- <i>co 11</i>
14	Butterfly nanostructures via regioregularly grafted multiâ€walled carbon nanotubes and poly(3â€hexylthiophene) to improve photovoltaic characteristics. Polymer International, 2019, 68, 335-343.	3.1	13
15	Star‣ike Poly(<i>N</i> â€isopropylacrylamide) and Poly(ethylene glycol) Copolymers Selfâ€Arranged in Newfound Single Crystals and Associated Novel Class of Polymer Brush Regimes with Vâ€Type Tethers. Macromolecular Chemistry and Physics, 2018, 219, 1700638.	2.2	4
16	Biodegradable and conductive hyperbranched terpolymers based on aliphatic polyester, poly(<scp>D</scp> , <scp>L</scp> -lactide), and polyaniline used as scaffold in tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 808-821.	3.4	23
17	Conversion of Faceâ€On Orientation to Edgeâ€On/Flatâ€On in Inducedâ€Crystallization of Poly(3â€hexylthiophene) via Functionalization/Grafting of Reduced Graphene Oxide with Thiophene Adducts. Macromolecular Chemistry and Physics, 2018, 219, 1700484.	2.2	10
18	Effect of miscibility on migration of third component in starâ€like coâ€continuous and disperseâ€withinâ€disperse mixed brushes. Polymer International, 2018, 67, 141-150.	3.1	2

RAANA SARVARI

#	Article	IF	CITATIONS
19	Purposive Assembling of Poly(3-hexylthiophene) onto Chemically Treated Multi-Wall Carbon Nanotube versus Reduced Graphene Oxide. Macromolecular Research, 2018, 26, 1200-1211.	2.4	4
20	A focus on polystyrene tacticity in synthesized conductive PEDOT:PSS thin films. Journal of Polymer Research, 2018, 25, 1.	2.4	5
21	Polymer wrapping <i>versus</i> well-oriented crystal growth of polythiophenes onto multi-wall carbon nanotubes <i>via</i> surface chemical modification and regioregularity deliberation. New Journal of Chemistry, 2018, 42, 14469-14480.	2.8	15
22	Novel thermoresponsive star-liked nanomicelles for targeting of anticancer agent. European Polymer Journal, 2018, 107, 143-154.	5.4	25
23	Enhanced properties of photovoltaic devices tailored with novel supramolecular structures based on reduced graphene oxide nanosheets grafted/functionalized with thiophenic materials. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1877-1889.	2.1	15
24	Composite electrospun nanofibers of reduced graphene oxide grafted with poly(3-dodecylthiophene) and poly(3-thiophene ethanol) and blended with polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1740-1761.	3.5	24
25	Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with a <scp>d</scp> -glucose core. New Journal of Chemistry, 2017, 41, 6371-6384.	2.8	37
26	Development of novel electrically conductive scaffold based on hyperbranched polyester and polythiophene for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 2673-2684.	4.0	40
27	Novel three-dimensional, conducting, biocompatible, porous, and elastic polyaniline-based scaffolds for regenerative therapies. RSC Advances, 2016, 6, 19437-19451.	3.6	42