
Eugenio Fava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4184998/publications.pdf Version: 2024-02-01

ΕΠΟΕΝΙΟ ΕΛΛΑ

#	Article	IF	CITATIONS
1	Human iPSC-derived brain endothelial microvessels in a multi-well format enable permeability screens of anti-inflammatory drugs. Biomaterials, 2022, 286, 121525.	11.4	16
2	Screening of a neuronal cell model of tau pathology for therapeutic compounds. Neurobiology of Aging, 2019, 76, 24-34.	3.1	12
3	Systems Biology Approaches to the Study of Biological Networks Underlying Alzheimer's Disease: Role of miRNAs. Methods in Molecular Biology, 2016, 1303, 349-377.	0.9	19
4	Current approaches and future role of high content imaging in safety sciences and drug discovery. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 479-493.	1.5	42
5	Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotechnology, 2013, 31, 638-646.	17.5	1,060
6	Systems survey of endocytosis by multiparametric image analysis. Nature, 2010, 464, 243-249.	27.8	407
7	MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. Journal of Cell Biology, 2010, 189, 997-1011.	5.2	173
8	Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms. Molecular Therapy, 2010, 18, 1357-1364.	8.2	831
9	A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Research, 2009, 37, 2867-2881.	14.5	315
10	siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis. Journal of Lipid Research, 2008, 49, 2427-2440.	4.2	15
11	Natural Product-Derived Modulators of Cell Cycle Progression and Viral Entry by Enantioselective Oxa Diels-Alder Reactions on the Solid Phase. Chemistry and Biology, 2007, 14, 443-451.	6.0	58
12	High-Content Phenotypic Cell-Based Assays. Principles and Practice, 2007, , 423-442.	0.3	0
13	Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature, 2005, 436, 78-86.	27.8	580
14	Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis. Journal of Cell Biology, 2005, 168, 607-618.	5.2	81
15	A simple cell line based in vitro test system for N-methyl-d-aspartate (NMDA) receptor ligands. Journal of Neuroscience Methods, 2002, 113, 99-110.	2.5	24
16	Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. NeuroReport, 2001, 12, 3645-3648.	1.2	41
17	Energy Requirement for Caspase Activation and Neuronal Cell Death. Brain Pathology, 2000, 10, 276-282.	4.1	112
18	Tributyltin-Induced Apoptosis Requires Glycolytic Adenosine Trisphosphate Production. Chemical Research in Toxicology, 1999, 12, 874-882.	3.3	59

Eugenio Fava

#	Article	IF	CITATIONS
19	Inhibition of Mitochondrial ATP Generation by Nitric Oxide Switches Apoptosis to Necrosis. Experimental Cell Research, 1999, 249, 396-403.	2.6	250
20	Nitric Oxide Inhibits Execution of Apoptosis at Two Distinct ATP-Dependent Steps Upstream and Downstream of Mitochondrial CytochromecRelease. Biochemical and Biophysical Research Communications, 1999, 258, 215-221.	2.1	57
21	Confocal scanning laser microscopy of the follicular epithelium in ovarioles of the stick insect Carausius morosus. Cell and Tissue Research, 1998, 293, 551-561.	2.9	8
22	1-Methyl-4-Phenylpyridinium Induces Autocrine Excitotoxicity, Protease Activation, and Neuronal Apoptosis. Molecular Pharmacology, 1998, 54, 789-801.	2.3	144
23	Caspase-Mediated Apoptosis in Neuronal Excitotoxicity Triggered by Nitric Oxide. Molecular Medicine, 1997, 3, 750-764.	4.4	174
24	Peroxynitrite and Nitric Oxide Donors Induce Neuronal Apoptosis by Eliciting Autocrine Excitotoxicity. European Journal of Neuroscience, 1997, 9, 1488-1498.	2.6	130