
Zheng Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4184314/publications.pdf Version: 2024-02-01

ZHENC LINC

#	Article	IF	CITATIONS
1	Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111806.	8.2	52
2	Investigating the synergistic initiating effect on promoting methane hydrate formation via mixed graphene and sodium cholate. Journal of Molecular Liquids, 2022, 349, 118134.	2.3	5
3	Vermiculite aerogels assembled from nanosheets via metal ion induced fast gelation. Applied Clay Science, 2022, 218, 106431.	2.6	8
4	The promoting effect and mechanisms of oxygen-containing groups on the enhanced formation of methane hydrate for gas storage. Chemical Engineering Journal, 2022, 435, 134917.	6.6	11
5	Freestanding Ti ₃ C ₂ T _{<i>x</i>} MXene/Prussian Blue Analogues Films with Superior Ion Uptake for Efficient Capacitive Deionization by a Dual Pseudocapacitance Effect. ACS Nano, 2022, 16, 1239-1249.	7.3	84
6	Three-body aggregation of guest molecules as a key step in methane hydrate nucleation and growth. Communications Chemistry, 2022, 5, .	2.0	58
7	Desalination of high-salt brine via carbon materials promoted cyclopentane hydrate formation. Desalination, 2022, 534, 115785.	4.0	11
8	Experimental Investigations on Thermal Transport Properties of Nanoscale-Graphite-Film. Journal of Thermal Science, 2022, 31, 1008-1015.	0.9	6
9	Molecular dynamics simulation and in-situ MRI observation of organic exclusion during CO2 hydrate growth. Chemical Physics Letters, 2021, 764, 138287.	1.2	16
10	MXene (Ti ₃ C ₂ T _{<i>x</i>}) as a Promising Substrate for Methane Storage via Enhanced Gas Hydrate Formation. Journal of Physical Chemistry Letters, 2021, 12, 6622-6627.	2.1	14
11	Enhance methane hydrate formation using fungus confining sodium dodecyl sulfate solutions for methane storage. Journal of Molecular Liquids, 2021, 333, 116020.	2.3	19
12	Desalination and enrichment of phosphorus-containing wastewater via cyclopentane hydrate. Journal of Environmental Chemical Engineering, 2021, 9, 105507.	3.3	5
13	Study on contact angles and surface energy of MXene films. RSC Advances, 2021, 11, 5512-5520.	1.7	31
14	A combined hydrate-based method for removing heavy metals from simulated wastewater with high concentrations. Journal of Environmental Chemical Engineering, 2021, 9, 106633.	3.3	11
15	Fast Peelâ€Off Ultrathin, Transparent, and Free‣tanding Films Assembled from Lowâ€Dimensional Materials Using MXene Sacrificial Layers and Produced Bubbles. Small Methods, 2021, , 2101388.	4.6	3
16	Desalination and Li+ enrichment via formation of cyclopentane hydrate. Separation and Purification Technology, 2020, 231, 115921.	3.9	29
17	Water permeability in MXene membranes: Process matters. Chinese Chemical Letters, 2020, 31, 1665-1669.	4.8	39
18	Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Science of the Total Environment, 2020, 746, 141009.	3.9	34

ZHENG LING

#	Article	IF	CITATIONS
19	Promoting and Inhibitory Effects of Hydrophilic/Hydrophobic Modified Aluminum Oxide Nanoparticles on Carbon Dioxide Hydrate Formation. Energies, 2020, 13, 5380.	1.6	7
20	Exfoliated vermiculite nanosheets supporting tetraethylenepentamine for CO2 capture. Results in Materials, 2020, 7, 100102.	0.9	9
21	Some new insights into the synergy occurring during char gasification in CO2/H2O mixtures. Fuel, 2020, 268, 117307.	3.4	11
22	Hydrate-based desalination process enhanced via graphite. IOP Conference Series: Earth and Environmental Science, 2019, 295, 042028.	0.2	2
23	Evolution of effective thermal conductivity during hydrate formation and decomposition in natural sediments. Energy Procedia, 2019, 158, 5825-5831.	1.8	6
24	The Controlling Factors and Ion Exclusion Mechanism of Hydrate-Based Pollutant Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 7932-7940.	3.2	68
25	A recyclable route to produce biochar with a tailored structure and surface chemistry for enhanced charge storage. Green Chemistry, 2019, 21, 2095-2103.	4.6	23
26	Cyclopentane hydrate-based processes for treating heavy metal containing wastewater. E3S Web of Conferences, 2019, 118, 04039.	0.2	4
27	Liquid Exfoliated Co(OH) ₂ Nanosheets as Lowâ€Cost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
28	A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under <i>in situ</i> pressures. Review of Scientific Instruments, 2018, 89, 054904.	0.6	16
29	Promotion effect of graphite on cyclopentane hydrate based desalination. Desalination, 2018, 445, 197-203.	4.0	36
30	Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation. Energy, 2018, 163, 27-37.	4.5	123
31	Hydrate Formation Characteristics during Carbon Dioxide Flow Through Depleted Methane Hydrate Deposits. Energy Technology, 2018, 6, 1186-1195.	1.8	7
32	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1702364.	10.2	33
33	Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. Journal of Materials Chemistry A, 2017, 5, 10380-10386.	5.2	32
34	In situ synthesis of chemically active ZIF coordinated with electrospun fibrous film for heavy metal removal with a high flux. Separation and Purification Technology, 2017, 177, 257-262.	3.9	28
35	Experimental study on the gas phase permeability of methane hydrate-bearing clayey sediments. Journal of Natural Gas Science and Engineering, 2016, 36, 378-384.	2.1	64
36	Sustainable Synthesis and Assembly of Biomassâ€Derived B/N Coâ€Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 111-119.	7.8	607

ZHENG LING

#	Article	IF	CITATION
37	Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF) Tj ETQq1 1 0.784314 rgBT	/Overlock 10 4.5	Tf _{.82} 0742
38	Lightweight carbon foam from coal liquefaction residue with broad-band microwave absorbing capability. Carbon, 2016, 105, 224-226.	5.4	86
39	2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30, 603-613.	8.2	293
40	Hydrate-based heavy metal separation from aqueous solution. Scientific Reports, 2016, 6, 21389.	1.6	42
41	Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods. RSC Advances, 2016, 6, 47357-47367.	1.7	56
42	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623
43	Graphene: Sulfonated Graphene as Cationâ€Selective Coating: A New Strategy for Highâ€Performance Membrane Capacitive Deionization (Adv. Mater. Interfaces 16/2015). Advanced Materials Interfaces, 2015, 2, .	1.9	0
44	Sulfonated Graphene as Cationâ€5elective Coating: A New Strategy for Highâ€Performance Membrane Capacitive Deionization. Advanced Materials Interfaces, 2015, 2, 1500372.	1.9	75
45	Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology, 2015, 26, 374003.	1.3	63
46	Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale, 2015, 7, 5120-5125.	2.8	151
47	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti ₂ SC. Angewandte Chemie - International Edition, 2015, 54, 4810-4814.	7.2	100
48	H _x MoO _{3â^'y} nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices. Journal of Materials Chemistry A, 2015, 3, 17217-17223.	5.2	33
49	Charge- and Size-Selective Ion Sieving Through Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes. Journal of Physical Chemistry Letters, 2015, 6, 4026-4031.	2.1	743
50	Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials, 2015, 27, 339-345.	11.1	1,125
51	A Layeredâ€Nanospaceâ€Confinement Strategy for the Synthesis of Twoâ€Dimensional Porous Carbon Nanosheets for Highâ€Rate Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1401761.	10.2	308
52	Magnetically recoverable Ni/C catalysts with hierarchical structure and high-stability for selective hydrogenation of nitroarenes. Physical Chemistry Chemical Physics, 2015, 17, 145-150.	1.3	48
53	One-pot to fabrication of calcium oxide/carbon foam composites for the adsorption of trace SO2. Chemical Engineering Journal, 2015, 259, 894-899.	6.6	13
54	An ionic liquid template approach to graphene–carbon xerogel composites for supercapacitors with enhanced performance. Journal of Materials Chemistry A, 2014, 2, 14329.	5.2	31

Zheng Ling

#	Article	IF	CITATIONS
55	Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon, 2014, 70, 130-141.	5.4	171
56	Enhanced Electrochemical Performance of Hydrous RuO ₂ /Mesoporous Carbon Nanocomposites via Nitrogen Doping. ACS Applied Materials & Interfaces, 2014, 6, 9751-9759.	4.0	59
57	Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16676-16681.	3.3	1,713
58	Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. Journal of Power Sources, 2013, 243, 350-353.	4.0	92
59	Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 12033.	5.2	78
60	Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon, 2013, 59, 530-536.	5.4	99
61	lonic liquid as template to synthesize carbon xerogels by coupling with KOH activation for supercapacitors. Electrochemistry Communications, 2013, 31, 31-34.	2.3	24
62	Synthesis and structure of carbon belts made of carbon nanofibers supported on carbon foams. Carbon, 2013, 61, 386-394.	5.4	4
63	Carbon foams made of in situ produced carbon nanocapsules and the use as a catalyst for oxidative dehydrogenation of ethylbenzene. Carbon, 2013, 60, 514-522.	5.4	42
64	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	5.2	193
65	Hydrothermal Synthesis of Phosphate-Functionalized Carbon Nanotube-Containing Carbon Composites for Supercapacitors with Highly Stable Performance. ACS Applied Materials & Interfaces, 2013, 5, 2104-2110.	4.0	107
66	Flower-Like Co-Ni/C Bimetallic Catalysts for the Selective Hydrogenation of o-Chloronitrobenzene. Chinese Journal of Catalysis, 2012, 33, 1883-1888.	6.9	5
67	Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. Journal of Materials Chemistry, 2012, 22, 21819.	6.7	215