Ferdinando Auricchio

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4184103/ferdinando-auricchio-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

356 papers

10,398 citations

56 h-index 88 g-index

385 ext. papers

11,961 ext. citations

3.5 avg, IF

6.66 L-index

#	Paper	IF	Citations
356	Structural Design and Testing of Digitally Manufactured Concrete Structures. <i>RILEM State-of-the-Art Reports</i> , 2022 , 187-222	1.3	1
355	Deep Learning to Automatically Segment and Analyze Abdominal Aortic Aneurysm from Computed Tomography Angiography <i>Cardiovascular Engineering and Technology</i> , 2022 , 1	2.2	3
354	Topology-preserving scan-based immersed isogeometric analysis. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2022 , 392, 114648	5.7	1
353	A theoretical and numerical analysis of a Dirichlet-Neumann domain decomposition method for diffusion problems in heterogeneous media. <i>Applied Numerical Mathematics</i> , 2022 , 173, 94-111	2.5	0
352	Free Bloch Wave Propagation in Periodic Cauchy Materials: Analytical and Computational Strategies 2022 , 41-49		
351	Cost-effective and accurate interlaminar stress modeling of composite Kirchhoff plates via immersed isogeometric analysis and equilibrium. <i>Journal of Mechanics</i> , 2022 , 38, 32-43	1	0
350	Impact of TEVAR on aortic biomechanics: integration of textit(in-silico) and textit(ex-vivo) analysis using porcine model <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2022 , e35	94 ^{2.6}	
349	The Finite Cell Method for Simulation of Additive Manufacturing. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2022 , 355-375	0.3	
348	Three-Dimensional Bioprinted Controlled Release Scaffold Containing Mesenchymal Stem/Stromal Lyosecretome for Bone Regeneration: Sterile Manufacturing and In Vitro Biological Efficacy. <i>Biomedicines</i> , 2022 , 10, 1063	4.8	2
347	3D printing technologies and materials in the medical field 2022 , 1-17		
346	Wideband Microstrip to 3-D-Printed Air-Filled Waveguide Transition Using a Radiation Probe. <i>IEEE Microwave and Wireless Components Letters</i> , 2022 , 1-4	2.6	1
345	Additive Manufacturing: Challenges and Opportunities for Structural Mechanics 2022, 437-451		
344	Towards Surgical Training Phantoms Obtained by Additive Manufacturing: Mechanical Characterization of Abdominal and Pelvic Organs. A Literature Review. <i>Studies in Mechanobiology, Tissue Engineering and Biomaterials</i> , 2022 , 279-298	0.5	
343	Hierarchical motion of 4D-printed structures using the temperature memory effect 2022 , 279-310		
342	A Small Peptide Targeting the Ligand-Induced Androgen Receptor/Filamin a Interaction Inhibits the Invasive Phenotype of Prostate Cancer Cells <i>Cells</i> , 2021 , 11,	7.9	3
341	Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts. <i>Interactive Cardiovascular and Thoracic Surgery</i> , 2021 , 32, 408-416	1.8	
340	Three-D-printed simulator for kidney transplantation. <i>Surgical Endoscopy and Other Interventional Techniques</i> , 2021 , 1	5.2	1

339	Early-age creep behaviour of 3D printable mortars: Experimental characterisation and analytical modelling. <i>Materials and Structures/Materiaux Et Constructions</i> , 2021 , 54, 1	3.4	1
338	Performance of high conformability vs. high radial force devices in the virtual treatment of TAVI patients with bicuspid aortic valve. <i>Medical Engineering and Physics</i> , 2021 , 89, 42-50	2.4	5
337	A novel quantitative analysis method for idiopathic epiretinal membrane. <i>PLoS ONE</i> , 2021 , 16, e024719	23.7	O
336	3D Bioprinted Scaffolds Containing Mesenchymal Stem/Stromal Lyosecretome: Next Generation Controlled Release Device for Bone Regenerative Medicine. <i>Pharmaceutics</i> , 2021 , 13,	6.4	10
335	CoreValve vs. Sapien 3 Transcatheter Aortic Valve Replacement: A Finite Element Analysis Study. <i>Bioengineering</i> , 2021 , 8,	5.3	5
334	Automatic Differentiation for Solid Mechanics. <i>Archives of Computational Methods in Engineering</i> , 2021 , 28, 875-895	7.8	О
333	3D-printed pumpkin-shaped cavity resonator to determine the complex permittivity of liquids. <i>Microwave and Optical Technology Letters</i> , 2021 , 63, 1061-1066	1.2	2
332	Simulating the spread of COVID-19 a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion. <i>Applied Mathematics Letters</i> , 2021 , 111, 106617	3.5	74
331	Outcome of transcatheter aortic valve replacement in bicuspid aortic valve stenosis with new-generation devices. <i>Interactive Cardiovascular and Thoracic Surgery</i> , 2021 , 32, 20-28	1.8	4
330	. IEEE Transactions on Microwave Theory and Techniques, 2021 , 69, 616-628	4.1	5
329	Geometric Analysis to Determine Kinking and Shortening of Bridging Stents After Branched Endovascular Aortic Repair. <i>CardioVascular and Interventional Radiology</i> , 2021 , 44, 711-719	2.7	2
328	Drag Forces after Thoracic Endovascular Aortic Repair. General Review of the Literature. <i>Annals of Vascular Surgery</i> , 2021 , 75, 479-488	1.7	0
327	Shape fidelity and sterility assessment of 3D printed polycaprolactone and hydroxyapatite scaffolds. <i>Journal of Polymer Research</i> , 2021 , 28, 1	2.7	3
326	Mixed variational formulations for structural topology optimization based on the phase-field approach. <i>Structural and Multidisciplinary Optimization</i> , 2021 , 64, 2627	3.6	2
325	Numerical simulation of particles flow in Laser Metal Deposition technology comparing Eulerian-Eulerian and Lagrangian-Eulerian approaches. <i>Journal of Manufacturing Processes</i> , 2021 , 68, 186-197	5	1
324	Additive manufacturing applications of phase-field-based topology optimization using adaptive isogeometric analysis. <i>GAMM Mitteilungen</i> , 2021 , 44, e202100013	1.8	5
323	TFA and HS based homogenization techniques for nonlinear composites. <i>International Journal of Solids and Structures</i> , 2021 , 225, 111050	3.1	1
322	Uniaxial properties of ascending aortic aneurysms in light of effective stretch. <i>Acta Biomaterialia</i> , 2021 , 136, 306-313	10.8	2

321	An immersed boundary approach for residual stress evaluation in selective laser melting processes. <i>Additive Manufacturing</i> , 2021 , 46, 102077	6.1	3
320	Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 123, 104772	4.1	4
319	The androgen receptor/filamin A complex as a target in prostate cancer microenvironment. <i>Cell Death and Disease</i> , 2021 , 12, 127	9.8	23
318	Additively Fabricated Air-Filled Waveguide Integrated With Printed Circuit Board Using a Through-Patch Transition. <i>IEEE Microwave and Wireless Components Letters</i> , 2021 , 1-4	2.6	1
317	Patient-specific computational fluid dynamics of femoro-popliteal stent-graft thrombosis. <i>Medical Engineering and Physics</i> , 2020 , 86, 57-64	2.4	6
316	Numerical Evaluation of Advanced Laser Control Strategies Influence on Residual Stresses for Laser Powder Bed Fusion Systems. <i>Integrating Materials and Manufacturing Innovation</i> , 2020 , 9, 435-445	2.9	7
315	Error-estimate-based adaptive integration for immersed isogeometric analysis. <i>Computers and Mathematics With Applications</i> , 2020 , 80, 2481-2516	2.7	8
314	A phase-field-based graded-material topology optimization with stress constraint. <i>Mathematical Models and Methods in Applied Sciences</i> , 2020 , 30, 1461-1483	3.5	13
313	Preliminary investigation on a new natural based poly(gamma-glutamic acid)/Chitosan bioink. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020 , 108, 2718-2732	3.5	10
312	Multi-Material 3D Printed Shape Memory Polymer with Tunable Melting and Glass Transition Temperature Activated by Heat or Light. <i>Polymers</i> , 2020 , 12,	4.5	16
311	Multidisciplinary preoperative simulations to optimize surgical outcomes in a challenging case of the complete double aortic arch in the adult. <i>Journal of Cardiac Surgery</i> , 2020 , 35, 716-720	1.3	1
310	Effect of testing procedures on buildability properties of 3D-printable concrete. <i>Construction and Building Materials</i> , 2020 , 245, 118286	6.7	27
309	Impact of Aortic Tortuosity on Displacement Forces in Descending Thoracic Aortic Aneurysms. <i>European Journal of Vascular and Endovascular Surgery</i> , 2020 , 59, 557-564	2.3	5
308	Structural analysis of non-prismatic beams: Critical issues, accurate stress recovery, and analytical definition of the Finite Element (FE) stiffness matrix. <i>Engineering Structures</i> , 2020 , 213, 110252	4.7	16
307	Mechanical Characterization of Cement-Based Mortar Used in 3DCP Including Early-Age Creep Effects. <i>RILEM Bookseries</i> , 2020 , 407-416	0.5	1
306	Transcatheter aortic valve implantation with the Portico and Evolut R bioprostheses in patients with elliptic aortic annulus. <i>EuroIntervention</i> , 2020 , 15, e1588-e1591	3.1	9
305	Three-Dimensional Printed Models Can Help Settle Malpractice Litigation Over Surgical Interventions. <i>Annals of Vascular Surgery</i> , 2020 , 65, e292-e294	1.7	O
304	Geometrical Evaluation of Aortic Sac Remodeling During Two-Step Thoracoabdominal Aortic Aneurysm Endovascular Repair. <i>Annals of Vascular Surgery</i> , 2020 , 67, 43-51	1.7	2

(2020-2020)

303	. IEEE Transactions on Microwave Theory and Techniques, 2020 , 68, 1175-1184	4.1	18
302	Sequential Motion of 4D Printed Photopolymers with Broad Glass Transition. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 1900370	3.9	14
301	Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures. <i>Mechanics Research Communications</i> , 2020 , 103, 103463	2.2	20
300	Feasibility of 3D printed salivary duct models for sialendoscopic skills training: preliminary report. <i>European Archives of Oto-Rhino-Laryngology</i> , 2020 , 277, 909-915	3.5	3
299	Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. <i>Additive Manufacturing</i> , 2020 , 36, 101498	6.1	8
298	Bioengineering Case Study to Evaluate Complications of Adverse Anatomy of Aortic Root in Transcatheter Aortic Valve Replacement: Combining Biomechanical Modelling with CT imaging. <i>Bioengineering</i> , 2020 , 7,	5.3	5
297	. IEEE Transactions on Microwave Theory and Techniques, 2020 , 68, 4361-4368	4.1	6
296	A Fat boundary-type method for localized nonhomogeneous material problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2020 , 364, 112983	5.7	1
295	3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks. <i>Cardiovascular Engineering and Technology</i> , 2020 , 11, 576-586	2.2	17
294	Use of 3D printer for face mask production to protect endoscopy unit personnel in contact with high-risk patients during COVID-19 pandemic. <i>Endoscopy</i> , 2020 , 52, 1146-1147	3.4	3
293	3-D Printed Bandpass Filter Using Conical Posts Interlaced Vertically 2020 ,		5
292	Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study. <i>Computational Mechanics</i> , 2020 , 66, 1-22	4	32
291	Basis of the Lattice Boltzmann Method for Additive Manufacturing. <i>Archives of Computational Methods in Engineering</i> , 2020 , 27, 1109-1133	7.8	4
290	Medical image analysis to measure the follow-up geometry of thoraco-abdominal aortic aneurysms treated with multilayer flow modulator stent. <i>Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization</i> , 2020 , 8, 126-133	0.9	3
289	Pre-Programmed Tri-Layer Electro-Thermal Actuators Composed of Shape Memory Polymer and Carbon Nanotubes. <i>Soft Robotics</i> , 2020 , 7, 123-129	9.2	20
288	An overview on 3D printing for abdominal surgery. <i>Surgical Endoscopy and Other Interventional Techniques</i> , 2020 , 34, 1-13	5.2	30
287	A Finite Element Analysis Study from 3D CT to Predict Transcatheter Heart Valve Thrombosis. <i>Diagnostics</i> , 2020 , 10,	3.8	11
286	Anomalous aortic origin of coronary artery biomechanical modeling: Toward clinical application. Journal of Thoracic and Cardiovascular Surgery, 2020,	1.5	4

285	Optimization clustering technique for PieceWise Uniform Transformation Field Analysis homogenization of viscoplastic composites. <i>Computational Mechanics</i> , 2019 , 64, 1495-1516	4	5
284	Topology optimization of stress-constrained structural elements using risk-factor approach. <i>Computers and Structures</i> , 2019 , 224, 106104	4.5	9
283	Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. <i>International Journal of Pharmaceutics</i> , 2019 , 571, 118700	6.5	71
282	An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations. <i>Journal of Computational Physics: X</i> , 2019 , 3, 100025	1	3
281	A three-dimensional phenomenological model for shape memory alloys including two-way shape memory effect and plasticity. <i>Mechanics of Materials</i> , 2019 , 136, 103085	3.3	23
2 80	In Vivo Morphological Changes of the Femoropopliteal Arteries due to Knee Flexion After Endovascular Treatment of Popliteal Aneurysm. <i>Journal of Endovascular Therapy</i> , 2019 , 26, 496-504	2.5	6
279	A novel layered topology of auxetic materials based on the tetrachiral honeycomb microstructure. <i>Materials and Design</i> , 2019 , 179, 107883	8.1	26
278	Graded-material design based on phase-field and topology optimization. <i>Computational Mechanics</i> , 2019 , 64, 1589-1600	4	17
277	Computational Fluid Dynamics in Descending Thoracic Aortic Aneurysm: Tortuosity Associated With High Displacement Forces. <i>Journal of Vascular Surgery</i> , 2019 , 69, e34	3.5	3
276	Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. <i>Integrating Materials and Manufacturing Innovation</i> , 2019 , 8, 167-177	2.9	20
275	Hospital Factory for Manufacturing Customised, Patient-Specific 3D Anatomo-Functional Models and Prostheses 2019 , 233-254		4
274	Androgens Induce Invasiveness of Triple Negative Breast Cancer Cells Through AR/Src/PI3-K Complex Assembly. <i>Scientific Reports</i> , 2019 , 9, 4490	4.9	43
273	Bioink Composition and Printing Parameters for 3D Modeling Neural Tissue. <i>Cells</i> , 2019 , 8,	7.9	30
272	Polyacrylate/polyacrylate-PEG biomaterials obtained by high internal phase emulsions (HIPEs) with tailorable drug release and effective mechanical and biological properties. <i>Materials Science and Engineering C</i> , 2019 , 105, 110060	8.3	13
271	Experimental characterization and computational modeling of hydrogel cross-linking for bioprinting applications. <i>International Journal of Artificial Organs</i> , 2019 , 42, 548-557	1.9	10
270	Innovative dampers as floor isolation systems for seismically-retrofit multi-storey critical facilities. <i>Engineering Structures</i> , 2019 , 201, 109772	4.7	5
269	Modeling the non-trivial behavior of anisotropic beams: A simple Timoshenko beam with enhanced stress recovery and constitutive relations. <i>Composite Structures</i> , 2019 , 229, 111265	5.3	7
268	A New Class of Doublet Based on Slotted Slant Ridge in Additive Manufacturing Technology 2019 ,		3

(2018-2019)

267	3D printing of aortic models as a teaching tool for improving understanding of aortic disease. Journal of Cardiovascular Surgery, 2019 , 60, 582-588	0.7	7	
266	The mechanical strength of Ti-6Al-4V columns with regular octet microstructure manufactured by electron beam melting. <i>Materialia</i> , 2019 , 5, 100232	3.2	13	
265	Different Strategies for the Additive Manufacturing of Slotted Slant Ridge Filtering Doublet 2019 ,		1	
264	Assessment of geometrical remodelling of the aortic arch after hybrid treatment. <i>European Journal of Cardio-thoracic Surgery</i> , 2019 , 55, 1045-1053	3	3	
263	The Modified Arch Landing Areas Nomenclature identifies hostile zones for endograft deployment: a confirmatory biomechanical study in patients treated by thoracic endovascular aortic repair <i>European Journal of Cardio-thoracic Surgery</i> , 2019 , 55, 990-997	3	7	
262	Numerical investigation on the seismic dissipation of glazed curtain wall equipped on high-rise buildings. <i>Engineering Structures</i> , 2019 , 179, 225-245	4.7	11	
261	Integrated shape memory alloy devices toward a high-performance glazed curtain wall seismic retrofit. <i>Engineering Structures</i> , 2019 , 179, 540-555	4.7	5	
260	Visible light 3D printing with epoxidized vegetable oils. <i>Additive Manufacturing</i> , 2019 , 25, 317-324	6.1	26	
259	Reversed Auxiliary Flow to Reduce Embolism Risk During TAVI: A Computational Simulation and Experimental Study. <i>Cardiovascular Engineering and Technology</i> , 2019 , 10, 124-135	2.2	2	
258	Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2019 , 344, 421-450	5.7	14	
257	Left atrial appendage closure guided by 3D computed tomography printing technology: A case control study. <i>Journal of Cardiovascular Computed Tomography</i> , 2019 , 13, 336-339	2.8	9	
256	Twelve-year Follow-up Post-Thoracic Endovascular Repair in Type B Aortic Dissection Shown by Three-dimensional Printing. <i>Annals of Vascular Surgery</i> , 2019 , 55, 309.e13-309.e19	1.7	3	
255	Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data. <i>Journal of Manufacturing Science and Engineering, Transactions of the ASME</i> , 2019 , 141,	3.3	35	
254	Skeleton-stabilized IsoGeometric Analysis: High-regularity interior-penalty methods for incompressible viscous flow problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2018 , 337, 324-351	5.7	8	
253	Applying functional principal components to structural topology optimization. <i>International Journal for Numerical Methods in Engineering</i> , 2018 , 115, 189-208	2.4	7	
252	Cross-talk between androgen receptor and nerve growth factor receptor in prostate cancer cells: implications for a new therapeutic approach. <i>Cell Death Discovery</i> , 2018 , 4, 5	6.9	20	
251	The Modified Arch Landing Areas Nomenclature (MALAN) Improves Prediction of Stent Graft Displacement Forces: Proof of Concept by Computational Fluid Dynamics Modelling. <i>European Journal of Vascular and Endovascular Surgery</i> , 2018 , 55, 584-592	2.3	32	
250	Spatiotemporal Image Correlation Analysis for 3D Flow Field Mapping in Microfluidic Devices. Analytical Chemistry, 2018 , 90, 2277-2284	7.8	5	

249	3D printing of reinforced concrete elements: Technology and design approach. <i>Construction and Building Materials</i> , 2018 , 165, 218-231	6.7	152
248	Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD). <i>Computational Mechanics</i> , 2018 , 62, 871-891	4	13
247	Planar Timoshenko-like model for multilayer non-prismatic beams. <i>International Journal of Mechanics and Materials in Design</i> , 2018 , 14, 51-70	2.5	16
246	Computational Methods for Elastoplasticity: An Overview of Conventional and Less-Conventional Approaches. <i>Archives of Computational Methods in Engineering</i> , 2018 , 25, 545-589	7.8	13
245	Effects of clinico-pathological risk factors on in-vitro mechanical properties of human dilated ascending aorta. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 77, 1-11	4.1	18
244	Patient-specific CFD modelling in the thoracic aorta with PC-MRI-based boundary conditions: A least-square three-element Windkessel approach. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2018 , 34, e3134	2.6	26
243	Temperature-memory effect in 3D printed photopolymers with broad glass transition 2018,		3
242	Midterm Follow-up Geometrical Analysis of Thoracoabdominal Aortic Aneurysms Treated with Multilayer Flow Modulator. <i>Annals of Vascular Surgery</i> , 2018 , 53, 97-104.e2	1.7	4
241	A compliant aortic model for in vitro simulations: Design and manufacturing process. <i>Medical Engineering and Physics</i> , 2018 , 59, 21-29	2.4	12
240	Aortic expansion induces lumen narrrowing in anomalous coronary arteries: a parametric structural finite element analysis. <i>Journal of Biomechanical Engineering</i> , 2018 ,	2.1	5
239	A cost-effective isogeometric approach for composite plates based on a stress recovery procedure. <i>Composites Part B: Engineering</i> , 2018 , 138, 12-18	10	21
238	A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2018 , 34, e2938	2.6	56
237	Blood Flow after Endovascular Repair in the Aortic Arch: A Computational Analysis. <i>Aorta</i> , 2018 , 6, 81-8	7 0.9	5
236	A 3D-printed patient-specific model to assist decision making in endovascular treatment of thoracoabdominal aortic aneurysm. <i>Journal of Cardiovascular Surgery</i> , 2018 , 59, 291-293	0.7	5
235	. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 2109-2113	3.8	4
234	Complementary Role of the Computed Biomodelling through Finite Element Analysis and Computed Tomography for Diagnosis of Transcatheter Heart Valve Thrombosis. <i>BioMed Research International</i> , 2018 , 2018, 1346308	3	7
233	Aortic Endovascular Surgery. SEMA SIMAI Springer Series, 2018, 167-184	0.2	
232	A computational approach based on a multiaxial fatigue criterion combining phase transformation and shakedown response for the fatigue life assessment of Nitinol stents. <i>Journal of Intelligent Material Systems and Structures</i> 2018 29, 3710-3724	2.3	5

231	3D-Printed Microfluidic Sensor in Substrate Integrated Waveguide Technology 2018 ,		4
230	A one-dimensional phenomenological model for the two-way shape-memory effect in semi-crystalline networks. <i>Polymer</i> , 2018 , 158, 130-148	3.9	14
229	The clinical use of 3D printing in surgery. <i>Updates in Surgery</i> , 2018 , 70, 381-388	2.9	62
228	Comparative Analysis of Porcine and Human Thoracic Aortic Stiffness. European Journal of Vascular and Endovascular Surgery, 2018, 55, 560-566	2.3	20
227	Effectiveness of 3D printed models in the treatment of complex aortic diseases. <i>Journal of Cardiovascular Surgery</i> , 2018 , 59, 699-706	0.7	10
226	Transcatheter Technologies for Valvular Replacement: an Update. <i>Surgical Technology International</i> , 2018 , 32, 190-199	0.8	
225	Patient-specific finite element analysis of popliteal stenting. <i>Meccanica</i> , 2017 , 52, 633-644	2.1	15
224	Influence of meso-structure and chemical composition on FDM 3D-printed parts. <i>Composites Part B: Engineering</i> , 2017 , 113, 371-380	10	89
223	Impact of thoracic endovascular aortic repair on radial strain in an ex vivo porcine model. <i>European Journal of Cardio-thoracic Surgery</i> , 2017 , 51, 783-789	3	2
222	Design of a Bioabsorbable Multilayered Patch for Esophagus Tissue Engineering. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600426	5.5	10
221	Impact of Thoracic Endovascular Aortic Repair on Pulsatile Circumferential and Longitudinal Strain in Patients With Aneurysm. <i>Journal of Endovascular Therapy</i> , 2017 , 24, 281-289	2.5	12
220	Stent-Graft Deployment Increases Aortic Stiffness in an ExIVivo Porcine Model. <i>Annals of Vascular Surgery</i> , 2017 , 43, 302-308	1.7	16
219	On the stability analysis of hyperelastic boundary value problems using three- and two-field mixed finite element formulations. <i>Computational Mechanics</i> , 2017 , 60, 479-492	4	11
218	3-D Printed Substrate Integrated Slab Waveguide for Single-Mode Bandwidth Enhancement. <i>IEEE Microwave and Wireless Components Letters</i> , 2017 , 27, 536-538	2.6	24
217	Value of 3D printing for the comprehension of surgical anatomy. <i>Surgical Endoscopy and Other Interventional Techniques</i> , 2017 , 31, 4102-4110	5.2	70
216	Computational Analysis of Advanced Shape-Memory Alloy Devices Through a Robust Modeling Framework. <i>Shape Memory and Superelasticity</i> , 2017 , 3, 109-123	2.8	3
215	A Regression Method Based on Noninvasive Clinical Data to Predict the Mechanical Behavior of Ascending Aorta Aneurysmal Tissue. <i>IEEE Transactions on Biomedical Engineering</i> , 2017 , 64, 2607-2617	5	4
214	Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis. <i>FASEB Journal</i> , 2017 , 31, 1289-1300	0.9	28

213	Extensibility and Distensibility of the Thoracic Aorta in Patients with Aneurysm. <i>European Journal of Vascular and Endovascular Surgery</i> , 2017 , 53, 199-205	2.3	20
212	Impact of Thoracic Endovascular Repair on Pulsatile Aortic Strain in Acute Type B Aortic Dissection: Preliminary Results. <i>Aorta</i> , 2017 , 5, 42-52	0.9	6
211	Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint. <i>Computational Mechanics</i> , 2017 , 60, 905-922	4	9
210	Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation. <i>Computers and Mathematics With Applications</i> , 2017 , 74, 1531-1541	2.7	24
209	Finite element analysis of TAVI: Impact of native aortic root computational modeling strategies on simulation outcomes. <i>Medical Engineering and Physics</i> , 2017 , 47, 2-12	2.4	36
208	Modular flow chamber for engineering bone marrow architecture and function. <i>Biomaterials</i> , 2017 , 146, 60-71	15.6	23
207	Mixed Isogeometric Finite Cell Methods for the Stokes problem. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2017 , 316, 400-423	5.7	22
206	A novel insight into the role of entry tears in type B aortic dissection: pressure measurements in an in vitro model. <i>International Journal of Artificial Organs</i> , 2017 , 40, 563-574	1.9	6
205	3D printing and metalization methodology for high dielectric resonator waveguide microwave filters 2017 ,		4
204	Flow-through micro-capillary refractive index sensor based on T/R spectral shift monitoring. <i>Biomedical Optics Express</i> , 2017 , 8, 4438-4453	3.5	11
203	Changes in aortic pulse wave velocity of four thoracic aortic stent grafts in an ex vivo porcine model. <i>PLoS ONE</i> , 2017 , 12, e0186080	3.7	14
202	3D Printing Technology for Buildings Accessibility: The Tactile Map for MTE Museum in Pavia. <i>Journal of Civil Engineering and Architecture</i> , 2017 , 11,	1.5	2
201	Serviceability Analysis of Non-Prismatic Timber Beams: Derivation and Validation of New and Effective Straightforward Formulas. <i>Open Journal of Civil Engineering</i> , 2017 , 07, 32-62	0.3	6
200	DISSIPATING EFFECT OF GLAZED CURTAIN WALL STICK SYSTEM INSTALLED ON HIGH-RISE MEGA-BRACED FRAME-CORE BUILDINGS UNDER NONLINEAR SEISMIC EXCITATION 2017 ,		2
199	Fatigue of Metallic Stents: From Clinical Evidence to Computational Analysis. <i>Annals of Biomedical Engineering</i> , 2016 , 44, 287-301	4.7	21
198	Human dilated ascending aorta: Mechanical characterization via uniaxial tensile tests. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 53, 257-271	4.1	49
197	From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy. <i>Surgical Endoscopy and Other Interventional Techniques</i> , 2016 , 30, 366-71	5.2	47
196	Efficiency and effectiveness of implicit and explicit approaches for the analysis of shape-memory alloy bodies. <i>Journal of Intelligent Material Systems and Structures</i> , 2016 , 27, 384-402	2.3	5

195	A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects. <i>Journal of Intelligent Material Systems and Structures</i> , 2016 , 27, 608-624	2.3	14	
194	Characterization of 3D-printed dielectric substrates with different infill for microwave applications 2016 ,		14	
193	An experimental investigation of the impact of thoracic endovascular aortic repair on longitudinal strain. <i>European Journal of Cardio-thoracic Surgery</i> , 2016 , 50, 955-961	3	13	
192	Theoretical and numerical modeling of dense and porous shape memory alloys accounting for coupling effects of plasticity and transformation. <i>International Journal of Solids and Structures</i> , 2016 , 88-89, 248-262	3.1	19	
191	Non-prismatic beams: A simple and effective Timoshenko-like model. <i>International Journal of Solids and Structures</i> , 2016 , 90, 236-250	3.1	46	
190	A shakedown analysis of high cycle fatigue of shape memory alloys. <i>International Journal of Fatigue</i> , 2016 , 87, 112-123	5	24	
189	3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation. <i>Journal of Synchrotron Radiation</i> , 2016 , 23, 622-8	2.4	25	
188	Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue. <i>International Journal of Fatigue</i> , 2016 , 87, 405-417	5	6	
187	Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. <i>Composite Structures</i> , 2016 , 142, 254-262	5.3	81	
186	Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. <i>Journal of Biomechanics</i> , 2016 , 49, 2513-9	2.9	48	
185	Isogeometric collocation mixed methods for rods. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2016 , 9, 33-42	2.8	3	
184	3D printing: clinical applications in orthopaedics and traumatology. <i>EFORT Open Reviews</i> , 2016 , 1, 121-	1 <i>2</i> 575	89	
183	A locally anisotropic fluid Itructure interaction remeshing strategy for thin structures with application to a hinged rigid leaflet. <i>International Journal for Numerical Methods in Engineering</i> , 2016 , 107, 155-180	2.4	7	
182	On the Use of Anisotropic Triangles with Mixed Finite Elements: Application to an Immersed Approach for Incompressible Flow Problems. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2016 , 195-236	0.6		
181	Homogenization techniques for the analysis of porous SMA. Computational Mechanics, 2016, 57, 755-7	724	14	
180	Gradient structures for the thermomechanics of shape-memory materials. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2016 , 299, 440-469	5.7	6	
179	Fractional flow reserve based on computed tomography: an overview. <i>European Heart Journal Supplements</i> , 2016 , 18, E49-E56	1.5	8	
178	A three-dimensional finite-strain phenomenological model for shape-memory polymers: Formulation, numerical simulations, and comparison with experimental data. <i>International Journal of Plasticity</i> 2016 , 83, 153-177	7.6	38	

177	A patient-specific follow up study of the impact of thoracic endovascular repair (TEVAR) on aortic anatomy and on post-operative hemodynamics <i>Computers and Fluids</i> , 2016 , 141, 54-61	2.8	13
176	Activities at Thoracic Aortic Research Center, IRCCS Policlinico San Donato. <i>European Heart Journal Supplements</i> , 2016 , 18, E57-E63	1.5	
175	An innovative strategy for the identification and 3D reconstruction of pancreatic cancer from CT images. <i>Updates in Surgery</i> , 2016 , 68, 273-278	2.9	8
174	Numerical Studies on the Stability of Mixed Finite Elements Over Anisotropic Meshes Arising from Immersed Boundary Stokes Problems. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2016 , 319-330	0.8	
173	A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys. <i>European Journal of Mechanics, A/Solids,</i> 2015 , 52, 1-11	3.7	12
172	Innovative and efficient stent flexibility simulations based on isogeometric analysis. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 295, 347-361	5.7	17
171	Micromechanical analysis of porous SMA. Smart Materials and Structures, 2015, 24, 085035	3.4	14
170	Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. <i>Molecular Biology of the Cell</i> , 2015 , 26, 2858-72	3.5	26
169	On a fictitious domain method with distributed Lagrange multiplier for interface problems. <i>Applied Numerical Mathematics</i> , 2015 , 95, 36-50	2.5	14
168	Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger R eissner principle. <i>Engineering Structures</i> , 2015 , 101, 88-98	4.7	24
167	The dimensional reduction approach for 2D non-prismatic beam modelling: A solution based on Hellinger R eissner principle. <i>International Journal of Solids and Structures</i> , 2015 , 63, 264-276	3.1	21
166	Geopolymers from low-T activated kaolin: Implications for the use of alunite-bearing raw materials. <i>Applied Clay Science</i> , 2015 , 114, 530-539	5.2	14
165	An ImmersedIfinite element method based on a locally anisotropic remeshing for the incompressible Stokes problem. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 294, 428	3 ⁵ 4 ⁷ 48	8
164	Biomechanical Changes After Thoracic Endovascular Aortic Repair in Type B Dissection: A Systematic Review. <i>Journal of Endovascular Therapy</i> , 2015 , 22, 918-33	2.5	11
163	2015,		1
162	Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components. <i>Computational Mechanics</i> , 2015 , 56, 533-549	4	7
161	Bayesian Estimation of the Aortic Stiffness based on Non-invasive Computed Tomography Images. <i>Springer Proceedings in Mathematics and Statistics</i> , 2015 , 133-142	0.2	
160	Isogeometric collocation methods for the Reissner Mindlin plate problem. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 284, 489-507	5.7	56

(2014-2015)

159	Patient-specific isogeometric structural analysis of aortic valve closure. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 284, 508-520	5.7	72	
158	An experimental, theoretical and numerical investigation of shape memory polymers. <i>International Journal of Plasticity</i> , 2015 , 67, 127-147	7.6	19	
157	Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 284, 861-880	5.7	45	
156	Hysteresis of Multiconfiguration Assemblies of Nitinol and Steel Strands: Experiments and Phenomenological Identification. <i>Journal of Engineering Mechanics - ASCE</i> , 2015 , 141, 04014135	2.4	38	
155	Applications of Shape Memory Alloys in Structural Engineering 2015 , 369-403		24	
154	SMA Biomedical Applications 2015 , 307-341		20	
153	SMA Cardiovascular Applications and Computer-Based Design 2015 , 343-367		4	
152	Assessment of a Black-Box Approach for a Parallel Finite Elements Solver in Computational Hemodynamics 2015 ,		2	
151	Modeling Permanent Deformations of Superelastic and Shape Memory Materials. <i>Journal of Functional Biomaterials</i> , 2015 , 6, 398-406	4.8	3	
150	An Efficient Finite Element Framework to Assess Flexibility Performances of SMA Self-Expandable Carotid Artery Stents. <i>Journal of Functional Biomaterials</i> , 2015 , 6, 585-97	4.8	2	
149	Exponential-based integration for BigoniPiccolroaz plasticity model. <i>European Journal of Mechanics, A/Solids</i> , 2015 , 51, 107-122	3.7	9	
148	Single-variable formulations and isogeometric discretizations for shear deformable beams. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2015 , 284, 988-1004	5.7	77	
147	A clinically applicable stochastic approach for noninvasive estimation of aortic stiffness using computed tomography data. <i>IEEE Transactions on Biomedical Engineering</i> , 2015 , 62, 176-87	5	13	
146	A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. <i>International Journal of Fatigue</i> , 2015 , 75, 69-79	5	20	
145	Successful Reconstruction of Nerve Defects Using Distraction Neurogenesis with a New Experimental Device. <i>Basic and Clinical Neuroscience</i> , 2015 , 6, 253-64	1.4	9	
144	A Numerical/Experimental Study of Nitinol Actuator Springs. <i>Journal of Materials Engineering and Performance</i> , 2014 , 23, 2420-2428	1.6	20	
143	On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements. <i>Computational Mechanics</i> , 2014 , 53, 1341-1353	4	51	
142	Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR). <i>Computational Mechanics</i> , 2014 , 54, 943-953	4	17	

141	How Constitutive Model Complexity can Affect the Capability to Fit Experimental Data: a Focus on Human Carotid Arteries and Extension/Inflation Data. <i>Archives of Computational Methods in Engineering</i> , 2014 , 21, 273-292	7.8	12
140	Computational plasticity of mixed hardening pressure-dependency constitutive equations. <i>Acta Mechanica</i> , 2014 , 225, 1699-1733	2.1	10
139	Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation. <i>International Journal of Plasticity</i> , 2014 , 59, 30-54	7.6	94
138	A simple framework to generate 3D patient-specific model of coronary artery bifurcation from single-plane angiographic images. <i>Computers in Biology and Medicine</i> , 2014 , 44, 97-109	7	15
137	Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2014 , 17, 277-85	2.1	21
136	Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. <i>Journal of Biomechanics</i> , 2014 , 47, 2547-55	2.9	73
135	Fatigue of 316L stainless steel notched . <i>International Journal of Fatigue</i> , 2014 , 68, 231-247	5	15
134	Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger R eissner principle. <i>Composite Structures</i> , 2014 , 118, 622-633	5.3	14
133	A Modified Finite Particle Method: Multi-dimensional elasto-statics and dynamics. <i>International Journal for Numerical Methods in Engineering</i> , 2014 , 99, 1-25	2.4	10
132	Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2014 , 17, 1347-57	2.1	62
131	A study on unfitted 1D finite element methods. <i>Computers and Mathematics With Applications</i> , 2014 , 68, 2080-2102	2.7	10
130	Aortic hemodynamics after thoracic endovascular aortic repair, with particular attention to the bird-beak configuration. <i>Journal of Endovascular Therapy</i> , 2014 , 21, 791-802	2.5	26
129	Response of porous SMA: a micromechanical study. Frattura Ed Integrita Strutturale, 2014, 8, 85-96	0.9	6
128	MODIFIED FINITE PARTICLE METHOD: APPLICATIONS TO ELASTICITY AND PLASTICITY PROBLEMS. International Journal of Computational Methods, 2014 , 11, 1350050	1.1	4
127	Importance of dynamic aortic evaluation in planning TEVAR. <i>Annals of Cardiothoracic Surgery</i> , 2014 , 3, 300-6	4.7	14
126	Locking-free isogeometric collocation methods for spatial Timoshenko rods. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2013 , 263, 113-126	5.7	97
125	Approximation of incompressible large deformation elastic problems: some unresolved issues. <i>Computational Mechanics</i> , 2013 , 52, 1153-1167	4	45
124	Statistical finite element analysis of the buckling behavior of honeycomb structures. <i>Composite Structures</i> , 2013 , 105, 240-255	5.3	56

(2011-2013)

123	Haemodynamic impact of stent-vessel (mal)apposition following carotid artery stenting: mind the gaps!. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2013 , 16, 648-59	2.1	21
122	The dimensional reduction modelling approach for 3D beams: Differential equations and finite-element solutions based on Hellinger B eissner principle. <i>International Journal of Solids and Structures</i> , 2013 , 50, 4184-4196	3.1	6
121	Numerical fatigue life assessment of cardiovascular stents: A two-scale plasticity-damage model. Journal of Physics: Conference Series, 2013, 451, 012031	0.3	1
120	Patient-specific aortic endografting simulation: from diagnosis to prediction. <i>Computers in Biology and Medicine</i> , 2013 , 43, 386-94	7	46
119	Aortic root 3D parametric morphological model from 2D-echo images. <i>Computers in Biology and Medicine</i> , 2013 , 43, 2196-204	7	12
118	Patient-specific finite element analysis of carotid artery stenting: a focus on vessel modeling. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 645-64	2.6	32
117	Aortic Biological Prosthetic Valve for Open-Surgery and Percutaneous Implant: Procedure Simulation and Performance Assessment. <i>Studies in Mechanobiology, Tissue Engineering and Biomaterials</i> , 2013 , 131-168	0.5	
116	Contemporary Role of Computational Analysis in Endovascular Treatment for Thoracic Aortic Disease. <i>Aorta</i> , 2013 , 1, 171-81	0.9	4
115	A new "flexible" 3D macroscopic model for shape memory alloys. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2013 , 6, 277-291	2.8	2
114	Isogeometric collocation for elastostatics and explicit dynamics. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2012 , 249-252, 2-14	5.7	141
113	Evaluation of carotid stent scaffolding through patient-specific finite element analysis. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2012 , 28, 1043-55	2.6	15
112	A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2012 , 249-252, 15-27	5.7	146
111	Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 15, 78-92	4.1	30
110	Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data. <i>Annals of Solid and Structural Mechanics</i> , 2012 , 4, 1-14	0.5	18
109	A New Integration Algorithm for the von-Mises Elasto-Plastic Model. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2012 , 233-258	0.3	
108	Computational finite element analyses to optimize graft sizing during aortic valve-sparing procedure. <i>Journal of Heart Valve Disease</i> , 2012 , 21, 141-7		3
107	Computer-based analysis to optimize prosthesis sizing during aortic valve surgery. <i>International Journal of Cardiology</i> , 2011 , 151, 253-4	3.2	2
106	Androgen-induced cell migration: role of androgen receptor/filamin A association. <i>PLoS ONE</i> , 2011 , 6, e17218	3.7	76

105	A computational tool to support pre-operative planning of stentless aortic valve implant. <i>Medical Engineering and Physics</i> , 2011 , 33, 1183-92	2.4	24
104	Theoretical and Experimental Investigation on SMA Superelastic Springs. <i>Journal of Materials Engineering and Performance</i> , 2011 , 20, 706-711	1.6	13
103	Theoretical and Experimental Study of the Shape Memory Effect of Beams in Bending Conditions. Journal of Materials Engineering and Performance, 2011 , 20, 712-718	1.6	15
102	On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model. <i>International Journal for Numerical Methods in Engineering</i> , 2011 , 85, 107-134	2.4	25
101	Novel finite particle formulations based on projection methodologies. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 1376-1388	1.9	14
100	A three-dimensional phenomenological model for Magnetic Shape Memory Alloys. <i>GAMM Mitteilungen</i> , 2011 , 34, 90-96	1.8	18
99	An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys. <i>Finite Elements in Analysis and Design</i> , 2011 , 47, 166-174	2.2	31
98	Performance evaluation of shape-memory-alloy superelastic behavior to control a stay cable in cable-stayed bridges. <i>International Journal of Non-Linear Mechanics</i> , 2011 , 46, 470-477	2.8	42
97	A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys. <i>International Journal of Plasticity</i> , 2011 , 27, 940-961	7.6	91
96	Carotid artery stenting simulation: from patient-specific images to finite element analysis. <i>Medical Engineering and Physics</i> , 2011 , 33, 281-9	2.4	121
95	Innovative Superelastic Isolation Device. <i>Journal of Earthquake Engineering</i> , 2011 , 15, 72-89	1.8	28
94	Finite element analysis of aortic root dilation: a new procedure to reproduce pathology based on experimental data. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2011 , 14, 875-82	2.1	15
93	Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. <i>Journal of Endovascular Therapy</i> , 2011 , 18, 397-406	2.5	32
92	Shape Memory Alloys: Material Modeling and Device Finite Element Simulations. <i>IUTAM Symposium on Cellular, Molecular and Tissue Mechanics</i> , 2011 , 33-42	0.3	1
91	A METRIC APPROACH TO PLASTICITY VIA HAMILTONIIACOBI EQUATION. <i>Mathematical Models and Methods in Applied Sciences</i> , 2010 , 20, 1617-1647	3.5	
90	ISOGEOMETRIC COLLOCATION METHODS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2010 , 20, 2075-2107	3.5	257
89	A new modeling approach for planar beams: finite-element solutions based on mixed variational derivations. <i>Journal of Mechanics of Materials and Structures</i> , 2010 , 5, 771-794	1.2	11
88	Shape-memory alloys: effective 3D modelling, computational aspects and design of devices. International Journal of Computational Materials Science and Surface Engineering, 2010, 3, 199	0.4	5

(2007-2010)

87	A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation. <i>Continuum Mechanics and Thermodynamics</i> , 2010 , 22, 345-362	3.5	30
86	A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. <i>International Journal of Plasticity</i> , 2010 , 26, 976-991	7.6	183
85	The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2010 , 199, 314-323	5.7	79
84	A Beam Finite Element for Nonlinear Analysis of Shape Memory Alloy Devices. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2010 , 59-97	0.6	1
83	Feasibility Investigation of Superelastic Effect Devices for Seismic Isolation Applications. <i>Journal of Materials Engineering and Performance</i> , 2009 , 18, 729-737	1.6	5
82	Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis. <i>Journal of Materials Engineering and Performance</i> , 2009 , 18, 787-792	1.6	12
81	SMA Numerical Modeling Versus Experimental Results: Parameter Identification and Model Prediction Capabilities. <i>Journal of Materials Engineering and Performance</i> , 2009 , 18, 649-654	1.6	34
80	A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2009 , 198, 1631-1637	5.7	77
79	Response to Comments by Dewey H. Hodges. <i>International Journal of Solids and Structures</i> , 2009 , 46, 1597	3.1	
78	Feasibility Assessment of an Innovative Isolation Bearing System with Shape Memory Alloys. Journal of Earthquake Engineering, 2009 , 13, 18-39	1.8	43
77	Numerical simulation of Nitinol p eripheral stents: from laser-cutting to deployment in a patient specific anatomy 2009 ,		5
76	Rate-dependent Thermo-mechanical Modelling of Superelastic Shape-memory Alloys for Seismic Applications. <i>Journal of Intelligent Material Systems and Structures</i> , 2008 , 19, 47-61	2.3	43
75	A RATE-INDEPENDENT MODEL FOR THE ISOTHERMAL QUASI-STATIC EVOLUTION OF SHAPE-MEMORY MATERIALS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2008 , 18, 125-164	3.5	45
74	Shape Memory Alloys: Material Modeling and Device Finite Element Simulations. <i>Materials Science Forum</i> , 2008 , 583, 257-275	0.4	5
73	On the geometrically exact beam model: A consistent, effective and simple derivation from three-dimensional finite-elasticity. <i>International Journal of Solids and Structures</i> , 2008 , 45, 4766-4781	3.1	39
72	Seismic Assessment of Concentrically Braced Steel Frames with Shape Memory Alloy Braces. Journal of Structural Engineering, 2007 , 133, 862-870	3	103
71	Generalized midpoint integration algorithms for J2 plasticity with linear hardening. <i>International Journal for Numerical Methods in Engineering</i> , 2007 , 72, 422-463	2.4	12
70	Second-order accurate integration algorithms for von-Mises plasticity with a nonlinear kinematic hardening mechanism. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2007 , 196, 1827-1846	5.7	40

69	A fully locking-freelisogeometric approach for plane linear elasticity problems: A stream function formulation. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2007 , 197, 160-172	5.7	178
68	A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. <i>International Journal of Plasticity</i> , 2007 , 23, 207-226	7.6	186
67	A 1D rate-dependent viscous constitutive model for superelastic shape-memory alloys: formulation and comparison with experimental data. <i>Smart Materials and Structures</i> , 2007 , 16, S39-S50	3.4	19
66	A Phenomenological One-Dimensional Model Describing Stress-Induced Solid Phase Transformation with Permanent Inelasticity. <i>Mechanics of Advanced Materials and Structures</i> , 2007 , 14, 43-55	1.8	10
65	A novel bptimallexponential-based integration algorithm for von-Mises plasticity with linear hardening: Theoretical analysis on yield consistency, accuracy, convergence and numerical investigations. <i>International Journal for Numerical Methods in Engineering</i> , 2006 , 67, 449-498	2.4	37
64	Seismic Vibration Control Using Superelastic Shape Memory Alloys. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2006 , 128, 294-301	1.8	65
63	Numerical and Experimental Evaluation of the Damping Properties of Shape-Memory Alloys. Journal of Engineering Materials and Technology, Transactions of the ASME, 2006 , 128, 312-319	1.8	22
62	Self-sensing CF-GFRP rods as mechanical reinforcement and sensors of concrete beams. <i>Smart Materials and Structures</i> , 2006 , 15, 182-186	3.4	16
61	. Journal of Earthquake Engineering, 2006 , 10, 45	1.8	5
60	EARTHQUAKE PERFORMANCE OF STEEL FRAMES WITH NITINOL BRACES. <i>Journal of Earthquake Engineering</i> , 2006 , 10, 45-66	1.8	35
59	A mixed FSDT finite element for monoclinic laminated plates. Computers and Structures, 2006, 84, 624-6	5 3₁9 5	21
58	Computational studies of shape memory alloy behavior in biomedical applications. <i>Journal of Biomechanical Engineering</i> , 2005 , 127, 716-25	2.1	57
57	A predictive study of the mechanical behaviour of coronary stents by computer modelling. <i>Medical Engineering and Physics</i> , 2005 , 27, 13-8	2.4	147
56	A stability study of some mixed finite elements for large deformation elasticity problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2005 , 194, 1075-1092	5.7	41
55	An analysis of some mixed-enhanced finite element for plane linear elasticity. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2005 , 194, 2947-2968	5.7	38
54	Integration schemes for von-Mises plasticity models based on exponential maps: numerical investigations and theoretical considerations. <i>International Journal for Numerical Methods in Engineering</i> , 2005 , 64, 1133-1165	2.4	23
53	WELL-POSEDNESS AND APPROXIMATION FOR A ONE-DIMENSIONAL MODEL FOR SHAPE MEMORY ALLOYS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2005 , 15, 1301-1327	3.5	7
52	A Finite Element for the Analysis of Monoclinic Laminated Plates 2005 , 333-343		

51	A Mixed FSDT Finite-Element Formulation for the Analysis of Composite Laminates Without Shear Correction Factors 2005 , 345-358		5
50	An asymptotically optimal model for isotropic heterogeneous linearly elastic plates. <i>ESAIM:</i> Mathematical Modelling and Numerical Analysis, 2004 , 38, 877-897	1.8	5
49	Kinetic friction. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2004 , 125, 17A; author reply 17A	2.1	7
48	Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. <i>Biomechanics and Modeling in Mechanobiology</i> , 2004 , 2, 205-17	3.8	110
47	Numerical investigation of the intravascular coronary stent flexibility. <i>Journal of Biomechanics</i> , 2004 , 37, 495-501	2.9	98
46	Numerical analysis of a three-dimensional super-elastic constitutive model. <i>International Journal for Numerical Methods in Engineering</i> , 2004 , 61, 142-155	2.4	13
45	A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. <i>International Journal for Numerical Methods in Engineering</i> , 2004 , 61, 807-836	2.4	192
44	A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. <i>International Journal for Numerical Methods in Engineering</i> , 2004 , 61, 716-737	2.4	84
43	Numerical Algorithm for a Three-dimensional Stress-induced Solid-phase-transformation Model. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2004 , 217-224	0.3	
42	Refined First-Order Shear Deformation Theory Models for Composite Laminates. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2003 , 70, 381-390	2.7	49
41	A mixed finite element method for beam and frame problems. Computational Mechanics, 2003, 31, 192-	2р3	98
40	Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket-archwire combinations. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2003 , 124, 403-9	2.1	58
39	Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2003 , 124, 395-402	2.1	128
38	On a new integration scheme for von-Mises plasticity with linear hardening. <i>International Journal for Numerical Methods in Engineering</i> , 2003 , 56, 1375-1396	2.4	45
37	Modelling of SMA materials: Training and two way memory effects. <i>Computers and Structures</i> , 2003 , 81, 2301-2317	4.5	90
36	On the enhanced strain technique for elasticity problems. <i>Computers and Structures</i> , 2003 , 81, 777-787	4.5	28
35	Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. <i>International Journal for Numerical Methods in Engineering</i> , 2002 , 55, 1255-1284	2.4	119
34	Remarks on the asymptotic behaviour of Koiter shells. <i>Computers and Structures</i> , 2002 , 80, 735-745	4.5	11

33	Mechanical behavior of coronary stents investigated through the finite element method. <i>Journal of Biomechanics</i> , 2002 , 35, 803-11	2.9	238
32	A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model. <i>International Journal of Plasticity</i> , 2001 , 17, 971-990	7.6	145
31	Analysis of kinematic linked interpolation methods for Reissner Mindlin plate problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 190, 2465-2482	5.7	29
30	Analysis of mixed finite elements for laminated composite plates. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 190, 4767-4783	5.7	11
29	Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretchingBending loadings. <i>International Journal of Solids and Structures</i> , 2001 , 38, 6123-6145	3.1	77
28	Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2001 , 4, 249-263	2.1	87
27	Mechanical characterisation of orthodontic superelastic Ni-Ti wires. <i>European Physical Journal Special Topics</i> , 2001 , 11, Pr8-577-Pr8-582		3
26	PARTIAL SELECTIVE REDUCED INTEGRATION SCHEMES AND KINEMATICALLY LINKED INTERPOLATIONS FOR PLATE BENDING PROBLEMS. <i>Mathematical Models and Methods in Applied Sciences</i> , 1999 , 09, 693-722	3.5	14
25	A temperature-dependent beam for shape-memory alloys: Constitutive modelling, finite-element implementation and numerical simulations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1999 , 174, 171-190	5.7	71
24	Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT. <i>Composite Structures</i> , 1999 , 46, 103-113	5.3	25
23	A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes. <i>International Journal of Plasticity</i> , 1999 , 15, 1359-1378	7.6	43
22	A mixed-enhanced finite-element for the analysis of laminated composite plates. <i>International Journal for Numerical Methods in Engineering</i> , 1999 , 44, 1481-1504	2.4	63
21	A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity. <i>International Journal of Plasticity</i> , 1998 , 14, 1155-1187	7.6	39
20	A Superelastic Shape-Memory-Alloy Beam Model. <i>Journal of Intelligent Material Systems and Structures</i> , 1997 , 8, 489-501	2.3	93
19	A viscoplastic constitutive equation bounded between two generalized plasticity models. <i>International Journal of Plasticity</i> , 1997 , 13, 697-721	7.6	9
18	Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1997 , 143, 175-194	5.7	327
17	Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1997 , 146, 281-312	5.7	425
16	A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. <i>International Journal of Non-Linear Mechanics</i> , 1997 , 32, 1101-1114	2.8	213

LIST OF PUBLICATIONS

A uniaxial model for shape-memory alloys. *International Journal of Solids and Structures*, **1997**, 34, 3601-3618 80 15 Generalized plasticity and shape-memory alloys. International Journal of Solids and Structures, 1996, 14 3.1 137 33, 991-1003 Shape memory alloy superelastic behavior: 3D finite-element simulations 1996, 13 9 Two material models for cyclic plasticity: Nonlinear kinematic hardening and generalized plasticity. 7.6 76 12 International Journal of Plasticity, 1995, 11, 65-98 A triangular thick plate finite element with an exact thin limit. Finite Elements in Analysis and Design, 2.2 11 37 **1995**. 19. 57-68 An Effective Plate Element for Contact Problems 1995, 237-241 10 A generalized elastoplastic plate theory and its algorithmic implementation. International Journal 9 2.4 21 for Numerical Methods in Engineering, 1994, 37, 2583-2608 A shear deformable plate element with an exact thin limit. Computer Methods in Applied Mechanics 64 5.7 and Engineering, **1994**, 118, 393-412 A generalized visco-plasticity model and its algorithmic implementation. Computers and Structures, 9 4.5 **1994**, 53, 637-647 Linked interpolation for Reissner-Mindlin plate elements: Part IIA simple triangle. International 6 102 2.4 Journal for Numerical Methods in Engineering, 1993, 36, 3057-3066 A new model of generalized plasticity and its numerical implementation. *International Journal of* 5 3.1 44 Solids and Structures, 1993, 30, 3171-3184 4D Multimaterial Printing of Programmable and Selective Light-Activated Shape-Memory 6.8 Structures with Embedded Gold Nanoparticles. Advanced Materials Technologies, 2101058 Numerical solution of additive manufacturing problems using a two-level method. International 2.4 3 Journal for Numerical Methods in Engineering, A continuous model for the simulation of manufacturing swarm robotics. Computational Mechanics, 1 4 A coupled multiphase Lagrangian-Eulerian fluid-dynamics framework for numerical simulation of 3.2 Laser Metal Deposition process. International Journal of Advanced Manufacturing Technology, 1