Kathleen R Markan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4182784/publications.pdf

Version: 2024-02-01

20 papers

2,875 citations

16 h-index 19 g-index

20 all docs

20 docs citations

times ranked

20

5434 citing authors

#	Article	IF	CITATIONS
1	The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood, 2021, 137, 1658-1668.	1.4	25
2	Pdgfrα-Cre mediated knockout of the aryl hydrocarbon receptor protects mice from high-fat diet induced obesity and hepatic steatosis. PLoS ONE, 2020, 15, e0236741.	2.5	11
3	Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity inÂvivo. Molecular Metabolism, 2020, 36, 100965.	6.5	12
4	Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Scientific Reports, 2019, 9, 630.	3.3	63
5	Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Scientific Reports, 2018, 8, 523.	3.3	94
6	Defining "FGF21 Resistance―during obesity: Controversy, criteria and unresolved questions. F1000Research, 2018, 7, 289.	1.6	34
7	FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Molecular Metabolism, 2017, 6, 602-610.	6.5	55
8	FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms. Cell Metabolism, 2017, 25, 935-944.e4.	16.2	229
9	Suppression of Resting Metabolism by the Angiotensin AT 2 Receptor. Cell Reports, 2016, 16, 1548-1560.	6.4	36
10	Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nature Communications, 2016, 7, 13007.	12.8	186
			<u></u>
11	Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Seminars in Cell and Developmental Biology, 2016, 53, 85-93.	5.0	78
11	Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Seminars in Cell and Developmental Biology, 2016, 53, 85-93. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, 2015, 64, 2002-2014.	5.0	78
	Developmental Biology, 2016, 53, 85-93. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose		
12	Developmental Biology, 2016, 53, 85-93. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, 2015, 64, 2002-2014. Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate	0.6	248
12	Developmental Biology, 2016, 53, 85-93. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, 2015, 64, 2002-2014. Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 2015, 21, 692-705. Circulating FGF21 Is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding.	0.6	248
12 13 14	Developmental Biology, 2016, 53, 85-93. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, 2015, 64, 2002-2014. Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 2015, 21, 692-705. Circulating FGF21 Is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding. Diabetes, 2014, 63, 4057-4063. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical	0.6 16.2 0.6	248 70 467
12 13 14	Developmental Biology, 2016, 53, 85-93. A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, 2015, 64, 2002-2014. Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 2015, 21, 692-705. Circulating FGF21 Is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding. Diabetes, 2014, 63, 4057-4063. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation, 2013, 123, 215-223. A Novel Role for Adipose Tissue in Exerciseâ€Induced Improvements in Glucose Homeostasis. FASEB	0.6 16.2 0.6	248 70 467 964

#	ŧ	Article	lF	CITATIONS
1	9	Cross-talk between Thyroid Hormone Receptor and Liver X Receptor Regulatory Pathways Is Revealed in a Thyroid Hormone Resistance Mouse Model. Journal of Biological Chemistry, 2006, 281, 295-302.	3.4	67
2	.0	The Nuclear Receptor Corepressors NCoR and SMRT Decrease Peroxisome Proliferator-activated Receptor Î ³ Transcriptional Activity and Repress 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 2005, 280, 13600-13605.	3.4	198