Stefan Schwaiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4182364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 2015, 33, 1582-1614.	6.0	1,871
2	Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochemical Pharmacology, 2014, 92, 73-89.	2.0	492
3	<i>In silico</i> Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of <i>Ruta graveolens</i> . Planta Medica, 2009, 75, 195-204.	0.7	131
4	Honokiol: A non-adipogenic PPAR ^{î3} agonist from nature. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4813-4819.	1.1	108
5	Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiology Ecology, 2012, 79, 638-648.	1.3	107
6	Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 437-442.	1.4	75
7	Apoptosis and necrosis: two different outcomes of cigarette smoke condensate-induced endothelial cell death. Cell Death and Disease, 2012, 3, e424-e424.	2.7	69
8	Distribution of a New Rosmarinic Acid Derivative inEryngium alpinumL. and Other Apiaceae. Journal of Agricultural and Food Chemistry, 2005, 53, 4367-4372.	2.4	66
9	NF-κB Inhibitors fromEurycoma longifolia. Journal of Natural Products, 2014, 77, 483-488.	1.5	66
10	Seasonal variation in the chemical composition of two chemotypes of Lippia alba. Food Chemistry, 2019, 273, 186-193.	4.2	57
11	Lignan Derivatives from <i>Krameria lappacea</i> Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro. Journal of Natural Products, 2011, 74, 1779-1786.	1.5	56
12	Identification of Preferred Chemotherapeutics for Combining with a <i>CHK1</i> Inhibitor. Molecular Cancer Therapeutics, 2013, 12, 2285-2295.	1.9	52
13	Leontopodic acid—a novel highly substituted glucaric acid derivative from Edelweiss (Leontopodium) Tj ETQq1 3	1 0.78431 1.0	4 rgBT /Ovei
14	Screening of Vietnamese medicinal plants for NF-κB signaling inhibitors: Assessing the activity of flavonoids from the stem bark of Oroxylum indicum. Journal of Ethnopharmacology, 2015, 159, 36-42.	2.0	48
15	Identification and pharmacological characterization of the anti-inflammatory principal of the leaves of dwarf elder (Sambucus ebulus L.). Journal of Ethnopharmacology, 2011, 133, 704-709.	2.0	43
16	New Constituents ofLeontopodium alpinumand theirin vitroLeukotriene Biosynthesis Inhibitory Activity. Planta Medica, 2004, 70, 978-985.	0.7	40
17	Antibacterial activity of Leontopodium alpinum (Edelweiss). Journal of Ethnopharmacology, 2003, 89, 301-303.	2.0	39
18	Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia of venous bypass grafts. Cardiovascular Research, 2009, 82, 542-549.	1.8	38

#	Article	IF	CITATIONS
19	<i>In vitro</i> evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenolâ€induced cell damage. Journal of Applied Toxicology, 2009, 29, 7-14.	1.4	37
20	Development of an HPLC-PAD-MS assay for the identification and quantification of major phenolic edelweiss (Leontopodium alpium Cass.) constituents. Phytochemical Analysis, 2006, 17, 291-298.	1.2	35
21	Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis, 2011, 219, 109-115.	0.4	35
22	Prevention of False-Positive Results: Development of an HPTLC Autographic Assay for the Detection of Natural Tyrosinase Inhibitors. Planta Medica, 2015, 81, 1198-1204.	0.7	35
23	Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC–ESI-MS. Phytochemistry, 2011, 72, 1379-1389.	1.4	34
24	New Lignan, Benzofuran, and Sesquiterpene Derivatives from the Roots of Leontopodium alpinum and L. leontopodioides. Helvetica Chimica Acta, 2003, 86, 733-738.	1.0	33
25	Anti-Inflammatory Activity ofLeontopodium alpinumand its Constituents. Planta Medica, 2004, 70, 502-508.	0.7	32
26	In vivo efficacy of different extracts of Edelweiss (Leontopodium alpinum Cass.) in animal models. Journal of Ethnopharmacology, 2006, 105, 421-426.	2.0	32
27	lsogentisin—A novel compound for the prevention of smoking-caused endothelial injury. Atherosclerosis, 2007, 194, 317-325.	0.4	32
28	Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties. Biochemical Pharmacology, 2008, 76, 236-248.	2.0	32
29	<i>Cotinus coggygria</i> Wood: Novel Flavanone Dimer and Development of an HPLC/UV/MS Method for the Simultaneous Determination of Fourteen Phenolic Constituents. Planta Medica, 2010, 76, 1765-1772.	0.7	32
30	Medicinal plants of northern Angola and their anti-inflammatory properties. Journal of Ethnopharmacology, 2018, 216, 26-36.	2.0	31
31	Identification of Chromomoric Acid C-I as an Nrf2 Activator in <i>Chromolaena odorata</i> . Journal of Natural Products, 2014, 77, 503-508.	1.5	29
32	Lignan formation in hairy root cultures of Edelweiss (Leontopodium nivale ssp. alpinum (Cass.)) Tj ETQq0 0 0 rg	BT /Overlo 1.1	ck 10 Tf 50 22
33	Leoligin, the Major Lignan from Edelweiss (Leontopodium nivale subsp. alpinum), Promotes Cholesterol Efflux from THP-1 Macrophages. Journal of Natural Products, 2016, 79, 1651-1657.	1.5	28
34	Iridoid Glycosides from the Leaves of <i>Sambucus ebulus</i> . Journal of Natural Products, 2009, 72, 1798-1803.	1.5	25
35	Fast and improved separation of major coumarins in <i>Ammi visnaga</i> (L.) Lam. by supercritical fluid chromatography. Journal of Separation Science, 2016, 39, 4042-4048.	1.3	25
36	Isolation of a Novel Thioflavin S–Derived Compound That Inhibits BAG-1–Mediated Protein Interactions and Targets BRAE Inhibitor–Resistant Cell Lines, Molecular Cancer Therapeutics, 2013, 12	19	23

	Isolation of a Novel Thioflavin Sa€"Derived Compound That Inhibits BAG-1a€"Mediated Protein		
36	Interactions and Targets BRAF Inhibitor–Resistant Cell Lines. Molecular Cancer Therapeutics, 2013, 12,	1.9	23
	2400-2414.		

#	Article	lF	CITATIONS
37	Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase. Phytomedicine, 2013, 20, 1190-1195.	2.3	23
38	2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran promotes endothelial nitric oxide synthase activity in human endothelial cells. Biochemical Pharmacology, 2012, 84, 804-812.	2.0	22
39	Anti-Inflammatory and Anti-Oxidant Potential of the Root Extract and Constituents of Doronicum austriacum. Molecules, 2017, 22, 1003.	1.7	22
40	Simultaneous determination of iridoids, phenylpropanoids and flavonoids in Lippia alba extracts by micellar electrokinetic capillary chromatography. Microchemical Journal, 2018, 138, 494-500.	2.3	22
41	Development of a Fast and Convenient Method for the Isolation of Triterpene Saponins from <i>Actaea racemosa</i> by High-speed Countercurrent Chromatography Coupled with Evaporative Light Scattering Detection. Planta Medica, 2010, 76, 467-473.	0.7	21
42	Dihydrochalcone Glucosides from the Subaerial Parts of <i>Thonningia sanguinea</i> and Their in Vitro PTP1B Inhibitory Activities. Journal of Natural Products, 2018, 81, 2091-2100.	1.5	19
43	Ratanhiaphenol III from Ratanhiae Radix is a PTP1B Inhibitor. Planta Medica, 2012, 78, 678-681.	0.7	18
44	Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor. Molecular Nutrition and Food Research, 2018, 62, e1700860.	1.5	17
45	Novel Natural Products for Healthy Ageing from the Mediterranean Diet and Food Plants of Other Global Sources—The MediHealth Project. Molecules, 2018, 23, 1097.	1.7	16
46	Nonprenylated Xanthones from Gentiana lutea, Frasera caroliniensis, and Centaurium erythraea as Novel Inhibitors of Vascular Smooth Muscle Cell Proliferation. Molecules, 2015, 20, 20381-20390.	1.7	15
47	Immunomodulatory Effects of Diterpene Quinone Derivatives from the Roots of <i>Horminum pyrenaicum</i> in Human PBMC. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	15
48	Mushroom Tyrosinase-Based Enzyme Inhibition Assays Are Not Suitable for Bioactivity-Guided Fractionation of Extracts. Journal of Natural Products, 2019, 82, 136-147.	1.5	14
49	Dual Inhibitory Action of a Novel AKR1C3 Inhibitor on Both Full-Length AR and the Variant AR-V7 in Enzalutamide Resistant Metastatic Castration Resistant Prostate Cancer. Cancers, 2020, 12, 2092.	1.7	14
50	HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species. Chemistry and Biodiversity, 2019, 16, e1800541.	1.0	12
51	Antiausterity Activity of Secondary Metabolites from the Roots of <i>Ferula hezarlalehzarica</i> against the PANC-1 Human Pancreatic Cancer Cell Line. Journal of Natural Products, 2020, 83, 1099-1106.	1.5	12
52	Inhibition of cell surface expression of endothelial adhesion molecules by ursolic acid prevents intimal hyperplasia of venous bypass grafts in rats. European Journal of Cardio-thoracic Surgery, 2012, 42, 878-884.	0.6	11
53	Interaction of <i>Carthamus tinctorius</i> lignan arctigenin with the binding site of tryptophanâ€degrading enzyme indoleamine 2,3â€dioxygenase. FEBS Open Bio, 2013, 3, 450-452.	1.0	11
54	5-Methoxyleoligin, a Lignan from Edelweiss, Stimulates CYP26B1-Dependent Angiogenesis In Vitro and Induces Arteriogenesis in Infarcted Rat Hearts In Vivo. PLoS ONE, 2013, 8, e58342.	1.1	11

#	Article	IF	CITATIONS
55	Identification of the NADPH Oxidase 4 Inhibiting Principle of Lycopus europaeus. Molecules, 2018, 23, 653.	1.7	11
56	Leoligin-inspired synthetic lignans with selectivity for cell-type and bioactivity relevant for cardiovascular disease. Chemical Science, 2019, 10, 5815-5820.	3.7	11
57	Labdane-Type Diterpenes from the Aerial Parts of Rydingia persica: Their Absolute Configurations and Protective Effects on LPS-Induced Inflammation in Keratinocytes. Journal of Natural Products, 2020, 83, 2456-2468.	1.5	11
58	Chemical profiling of Edelweiss (Leontopodium alpinum Cass.) extracts by micellar electrokinetic capillary chromatography. Fìtoterapìâ, 2012, 83, 1680-1686.	1.1	10
59	Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. International Journal of Molecular Sciences, 2020, 21, 7102.	1.8	10
60	A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells. Oncotarget, 2016, 7, 18851-18864.	0.8	10
61	Quantitative analysis of anti-inflammatory lignan derivatives in Ratanhiae radix and its tincture by HPLC–PDA and HPLC–MS. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 546-552.	1.4	9
62	Tyrosinase Inhibitors from the Aerial Parts of <i>Wulfenia carinthiaca</i> <scp>Jacq.</scp> . Chemistry and Biodiversity, 2018, 15, e1800014.	1.0	9
63	Purification of thonningianins A and B and four further derivatives from Thonningia sanguinea by one―and twoâ€dimensional centrifugal partition chromatography. Journal of Separation Science, 2020, 43, 524-530.	1.3	9
64	<i>In vitro</i> metabolism of selected bioactive compounds of <i>Eurycoma longifolia</i> root extract to identify suitable markers in doping control. Drug Testing and Analysis, 2019, 11, 86-94.	1.6	8
65	Phytochemical Profile of the Aerial Parts of Sedum sediforme and Anti-inflammatory Activity of Myricitrin. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	7
66	From bench to counter: Discovery and validation of a peony extract as tyrosinase inhibiting cosmeceutical. European Journal of Medicinal Chemistry, 2019, 184, 111738.	2.6	7
67	Effect of Nonâ€Volatile Constituents of <i>Elsholtzia ciliata</i> (<scp>Thunb</scp> .) <scp>Hyl</scp> . from Southern Vietnam on Reactive Oxygen Species and Nitric Oxide Release in Macrophages. Chemistry and Biodiversity, 2021, 18, e2000577.	1.0	7
68	From Vietnamese plants to a biflavonoid that relieves inflammation by triggering the lipid mediator class switch to resolution. Acta Pharmaceutica Sinica B, 2021, 11, 1629-1647.	5.7	7
69	Eurycomalactone Inhibits Expression of Endothelial Adhesion Molecules at a Post-Transcriptional Level. Journal of Natural Products, 2017, 80, 3186-3193.	1.5	6
70	Melodamide A fromMelodorum fruticosum— Quantification using HPLC and oneâ€stepâ€isolation by centrifugal partition chromatography. Journal of Separation Science, 2019, 42, 3165-3172.	1.3	6
71	Efficient Isolation of Mycosporine-Like Amino Acids from Marine Red Algae by Fast Centrifugal Partition Chromatography. Marine Drugs, 2022, 20, 106.	2.2	6
72	The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis, 2016, 5, e215-e215.	2.1	5

#	Article	IF	CITATIONS
73	Development of a selective HPLC-DAD/ELSD method for the qualitative and quantitative assessment of commercially available Eurycoma longifolia products and plant extracts. FA¬toterapA¬A¢, 2018, 124, 188-192.	1.1	5
74	A new bisabolane derivative of Leontopodium andersonii. Natural Product Communications, 2010, 5, 667-8.	0.2	5
75	Characterization of the XIAP-Inhibiting Proanthocyanidin Fraction of the Aerial Parts of Ephedra sinica. Planta Medica, 2016, 82, 973-985.	0.7	4
76	Aristolic Acid Derivatives from the Bark of Antidesma ghaesembilla. Planta Medica, 2017, 83, 1097-1102.	0.7	4
77	Development and Validation of a UHPLC-DAD Method for the Quantitative Analysis of Major Dihydrochalcone Glucosides from Thonningia sanguinea VAHL. Planta Medica, 2019, 85, 911-916.	0.7	4
78	Isolation of Three Triterpene Saponins, Including Two New Oleanane Derivatives, fromSoldanella alpinaand Hydrophilic Interaction Liquid Chromatography-Evaporative Light Scattering Detection of these Three Saponins in FourSoldenellaSpecies. Phytochemical Analysis, 2017, 28, 567-574.	1.2	3
79	Unusual Secondary Metabolites of the Aerial Parts of Dionysia diapensifolia Bioss. (Primulaceae) and Their Anti-Inflammatory Activity. Biomolecules, 2020, 10, 438.	1.8	3
80	Identification and structural elucidation of bioactive compounds from Scirpoides holoschoenus. Phytochemistry, 2022, 200, 113241.	1.4	3
81	Simultaneous Quantitative Analysis of the Major Bioactive Compounds in <i>Gentianae Radix</i> and its Beverages by UHPSFC–DAD. Journal of Agricultural and Food Chemistry, 2022, 70, 7586-7593.	2.4	3
82	Cotinus coggygria heartwood: a new source of acetylcholinesterase inhibiting compounds. Planta Medica, 2008, 74, .	0.7	2
83	Bioactivity-guided isolation of acetylcholinesterase inhibiting constituents of the flowers of Bride's Feathers (Aruncus dioicus). Planta Medica, 2009, 75, .	0.7	2
84	Leoligin formation in transformed hairy roots of Edelweiss (Leontopodium alpinum Cass.). Planta Medica, 2013, 79, .	0.7	2
85	Changes in the anti-inflammatory activity of aurone and chalcone class flavonoids from Cotinus coggygria extracts after complexation with cyclodextrins. Planta Medica, 2015, 81, .	0.7	2
86	A new Bisabolane Derivative of <i>Leontopodium andersonii</i> . Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	1
87	CHROMOSOME NUMBERS OF THE EDELWEISS, LEONTOPODIUM (ASTERACEAE, COMPOSITAE $\hat{a} \in $) Tj ETQq $1\ 1$	0.784314 0.4	l rg <mark>B</mark> T /Overle
88	Xanthones from the bitter plants Gentiana lutea, Centaurium erythraea, and Frasera caroliniensis (Gentianaceae) inhibit vascular smooth muscle cell (VSMC) proliferation. Planta Medica, 2015, 81, .	0.7	1
89	<i>In silico</i> Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of <i>Ruta graveolens</i> L. Planta Medica, 2009, 75, 293-293.	0.7	0
90	Known Natural Products with Unknown Bioactivity. Planta Medica, 2009, 75, .	0.7	0

#	Article	IF	CITATIONS
91	Extracts and constituents of Edelweiss (Leontopodium alpinum) enhance cholinergic transmission: AChE inhibitory, ACh-increasing and memory improving properties. Planta Medica, 2007, 73, .	0.7	0
92	Target fishing for constituents from Ruta graveolens using a virtual parallel screening approach. Planta Medica, 2008, 74, .	0.7	0
93	New results on the phytochemistry and pharmacology of Doronicum austriacum Jaqc. Planta Medica, 2008, 74, .	0.7	0
94	Development of a fast method for the isolation of triterpene saponins from Actaea racemosa. Planta Medica, 2009, 75, .	0.7	0
95	Diterpenquinones derivatives of the roots of Horminum pyrenaicum. Planta Medica, 2010, 76, .	0.7	0
96	High-speed counter-current chromatography: an effective method for the isolation of flavonoids and profisetinidin from fustic (Cotinus coggygria Scop.). Planta Medica, 2010, 76, .	0.7	0
97	Development of a validated LC-PDA method for the quantification of anti-inflammatory secondary metabolites from Ratanhiae radix. Planta Medica, 2010, 76, .	0.7	0
98	Triterpene-saponins of the roots of Soldanella alpina L. Planta Medica, 2012, 78, .	0.7	0
99	Potential anxiolytics acting via the neuropeptide S-receptor. Planta Medica, 2012, 78, .	0.7	0
100	Thiolysis-HPLC/MS characterization of oligomeric and polymeric proanthocyanidins in Ephedra sinica. Planta Medica, 2013, 79, .	0.7	0
101	Evaluation of plant extracts with detoxifying properties by mammalian cell metabolomics. Planta Medica, 2014, 80, .	0.7	0
102	Rationalization of the traditional use of Antidesma ghaesembilla to treat hormone related disorders. Planta Medica, 2015, 81, .	0.7	0
103	Estrogenic and anti-estrogenic properties of tropical African plants traditionally used in folk medicine. Planta Medica, 2015, 81, .	0.7	0
104	Degradation study of carnosic acid. Planta Medica, 2016, 81, S1-S381.	0.7	0
105	New PTP1B inhibiting ellagitannins from the rhizome of Thonningia sanguinea. , 2017, 4, .		0
106	Terpene ester derivatives of the roots of Ferula hezarlalehzarica. Planta Medica International Open, 2017, 4, .	0.3	0
107	A novel mycosporin like amino acid in an undescribed alga of the Prasiolaceae family. Planta Medica International Open, 2017, 4, .	0.3	0
108	Separation of 1'S-1'-acetoxychavicol acetate from a Alpinia galanga rhizome extract by fast centrifugal partition chromatography. , 2017, 4, .		0

#	Article	IF	CITATIONS
109	Phytochemical investigations of Berardia subacaulis. , 2017, 4, .		Ο
110	Bioactivity-guided fractionation of extracts using mushroom tyrosinase – friend or foe?. Planta Medica, 2019, 85, .	0.7	0
111	The alkamide constituents of Zanthoxylum rhetsa (Roxb.) DC. fruits. Planta Medica, 2019, 85, .	0.7	Ο
112	LC-TOF-MS-based metabolomic fingerprinting of Rumex species. Planta Medica, 2019, 85, .	0.7	0
113	Identification of new labdane diterpenoids from the aerial parts of Otostegia persica utilizing NMR and circular dichroism calculations. Planta Medica, 2019, 85, .	0.7	0