Janet Rossant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4182280/publications.pdf Version: 2024-02-01

IANET POSSANT

#	Article	IF	CITATIONS
1	Early human embryonic development: Blastocyst formation to gastrulation. Developmental Cell, 2022, 57, 152-165.	3.1	64
2	Live imaging YAP signalling in mouse embryo development. Open Biology, 2022, 12, 210335.	1.5	7
3	Celebrating scientific excellence and global health impact: The 2022 Canada Gairdner Awards. Cell, 2022, , .	13.5	0
4	Diversifying stem cell debates: Including Muslim contexts and perspectives. Stem Cell Reports, 2022, , .	2.3	2
5	Anniversary reflections: ISSCR presidents on 20 years of progress. Cell Stem Cell, 2022, 29, 876-878.	5.2	0
6	Evaluating totipotency using criteria of increasing stringency. Nature Cell Biology, 2021, 23, 49-60.	4.6	121
7	Fetal lung underdevelopment is rescued by administration of amniotic fluid stem cell extracellular vesicles in rodents. Science Translational Medicine, 2021, 13, .	5.8	40
8	Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports, 2021, 16, 1031-1038.	2.3	52
9	Human embryo research, stem cell-derived embryo models and inÂvitro gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Reports, 2021, 16, 1416-1424.	2.3	59
10	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	2.3	134
11	Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
12	The exploration of pluripotency space: Charting cell state transitions in peri-implantation development. Cell Stem Cell, 2021, 28, 1896-1906.	5.2	41
13	Toward Guidelines for Research on Human Embryo Models Formed from Stem Cells. Stem Cell Reports, 2020, 14, 169-174.	2.3	63
14	Canada Gairdner Awards 2020: A Tightly Woven Tapestry of Discovery. Cell, 2020, 181, 507-508.	13.5	1
15	Efficient Generation of Largeâ€Fragment Knockâ€In Mouse Models Using 2â€Cell (2C)â€Homologous Recombination (HR)â€CRISPR. Current Protocols in Mouse Biology, 2020, 10, e67.	1.2	30
16	Esrrb function is required for proper primordial germ cell development in presomite stage mouse embryos. Developmental Biology, 2019, 455, 382-392.	0.9	13
17	Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast. Stem Cells, 2019, 37, 1307-1318.	1.4	10
18	Conversion of human and mouse fibroblasts into lung-like epithelial cells. Scientific Reports, 2019, 9, 9027.	1.6	7

#	Article	IF	CITATIONS
19	2018 ISSCR Strategic Planning: Looking to the Future. Stem Cell Reports, 2019, 12, 1183-1185.	2.3	4
20	The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF. Journal of Cystic Fibrosis, 2019, 18, 35-43.	0.3	50
21	Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function. Biology Open, 2018, 7, .	0.6	33
22	Modeling signalingâ€dependent pluripotency with Boolean logic to predict cell fate transitions. Molecular Systems Biology, 2018, 14, e7952.	3.2	49
23	Debate ethics of embryo models from stem cells. Nature, 2018, 564, 183-185.	13.7	72
24	Genetic Control of Early Cell Lineages in the Mammalian Embryo. Annual Review of Genetics, 2018, 52, 185-201.	3.2	85
25	Gene editing in human development: ethical concerns and practical applications. Development (Cambridge), 2018, 145, .	1.2	25
26	Exploring early human embryo development. Science, 2018, 360, 1075-1076.	6.0	42
27	Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nature Biotechnology, 2018, 36, 632-637.	9.4	232
28	Porcupine-dependent Wnt signaling controls stromal proliferation and endometrial gland maintenance through the action of distinct WNTs. Developmental Biology, 2017, 422, 58-69.	0.9	15
29	New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell, 2017, 20, 18-28.	5.2	210
30	Porcupine-dependent Wnt activity within the uterine epithelium is essential for fertility. Biology of Reproduction, 2017, 97, 688-697.	1.2	6
31	Human Embryo Editing: Opportunities and Importance of Transnational Cooperation. Cell Stem Cell, 2017, 21, 423-426.	5.2	21
32	Phenotypic profiling of CFTR modulators in patient-derived respiratory epithelia. Npj Genomic Medicine, 2017, 2, 12.	1.7	66
33	The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation. Scientific Reports, 2017, 7, 17156.	1.6	58
34	Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. ELife, 2017, 6, .	2.8	117
35	AIRE is a critical spindle-associated protein in embryonic stem cells. ELife, 2017, 6, .	2.8	19
36	Stem cells and interspecies chimaeras. Nature, 2016, 540, 51-59.	13.7	134

#	Article	IF	CITATIONS
37	Depending on maternal Yap. Cell Research, 2016, 26, 393-394.	5.7	5
38	Implantation barrier overcome. Nature, 2016, 533, 182-183.	13.7	16
39	Multiple Mechanisms Cooperate to Constitutively Exclude the Transcriptional Co-Activator YAP from the Nucleus During Murine Oogenesis1. Biology of Reproduction, 2016, 94, 102.	1.2	19
40	Identification of RSK and TTK as Modulators of Blood Vessel Morphogenesis Using an Embryonic Stem Cell-Based Vascular Differentiation Assay. Stem Cell Reports, 2016, 7, 787-801.	2.3	14
41	Making the Mouse Blastocyst. Current Topics in Developmental Biology, 2016, 117, 275-288.	1.0	39
42	Cover Image, Volume 5, Issue 2. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, i-i.	5.9	0
43	Distinct mechanisms regulate Cdx2 expression in the blastocyst and in trophoblast stem cells. Scientific Reports, 2016, 6, 27139.	1.6	17
44	Flt1/VEGFR1 heterozygosity causes transient embryonic edema. Scientific Reports, 2016, 6, 27186.	1.6	6
45	The mammalian blastocyst. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 210-232.	5.9	50
46	What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast. Stem Cell Reports, 2016, 6, 257-272.	2.3	213
47	Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. Journal of Molecular Cell Biology, 2015, 7, 455-465.	1.5	24
48	Mouse and human blastocyst-derived stem cells: vive les differences. Development (Cambridge), 2015, 142, 9-12.	1.2	112
49	Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nature Protocols, 2015, 10, 363-381.	5.5	67
50	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	9.4	137
51	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
52	Regeneration of Thyroid Function by Transplantation of Differentiated Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 527-542.	5.2	170
53	Acellular Lung Scaffolds Direct Differentiation of Endoderm to Functional Airway Epithelial Cells: Requirement of Matrix-Bound HS Proteoglycans. Stem Cell Reports, 2015, 4, 419-430.	2.3	91
54	Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development (Cambridge), 2014, 141, 2206-2215.	1.2	286

#	Article	IF	CITATIONS
55	Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells. Cell Reports, 2014, 9, 780-793.	2.9	53
56	Identification of a Proximal Progenitor Population from Murine Fetal Lungs with Clonogenic and Multilineage Differentiation Potential. Stem Cell Reports, 2014, 3, 634-649.	2.3	32
57	Gut endoderm takes flight from the wings of mesoderm. Nature Cell Biology, 2014, 16, 1128-1129.	4.6	2
58	First Mouse Model for Combined Osteogenesis Imperfecta and Ehlers-Danlos Syndrome. Journal of Bone and Mineral Research, 2014, 29, 1412-1423.	3.1	58
59	Mechanisms of Pluripotency In Vivo and In Vitro. Current Topics in Developmental Biology, 2014, 107, 1-37.	1.0	46
60	Notch and Hippo Converge on Cdx2 to Specify the Trophectoderm Lineage in the Mouse Blastocyst. Developmental Cell, 2014, 30, 410-422.	3.1	189
61	HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.	2.7	132
62	A Trusted Voice for Stem Cell Research. Stem Cell Reports, 2014, 2, 749-750.	2.3	0
63	Genes for regeneration. ELife, 2014, 3, e02517.	2.8	2
64	Modeling Pulmonary Alveolar Proteinosis with Induced Pluripotent Stem Cells. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 124-126.	2.5	1
65	The Hippo Pathway Member Nf2 Is Required for Inner Cell Mass Specification. Current Biology, 2013, 23, 1195-1201.	1.8	186
66	Anthony James Pawson (1952–2013). Nature, 2013, 501, 168-168.	13.7	1
67	Making a knockout mouse: From stem cells to embryos. Nature Cell Biology, 2013, 15, 1133-1133.	4.6	1
68	Interaction Domains of Sos1/Grb2 Are Finely Tuned for Cooperative Control of Embryonic Stem Cell Fate. Cell, 2013, 152, 1008-1020.	13.5	53
69	Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development (Cambridge), 2013, 140, 2961-2971.	1.2	55
70	Generation of Lung Epithelium from Pluripotent Stem Cells. Current Pathobiology Reports, 2013, 1, 137-145.	1.6	21
71	Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. DMM Disease Models and Mechanisms, 2013, 6, 571-9.	1.2	63
72	ENU-induced Mutation in the DNA-binding Domain of KLF3 Reveals Important Roles for KLF3 in Cardiovascular Development and Function in Mice. PLoS Genetics, 2013, 9, e1003612.	1.5	28

#	Article	IF	CITATIONS
73	Enu Mutagenesis Identifies a Novel Platelet Phenotype in a Loss-Of-Function Jak2 Allele. PLoS ONE, 2013, 8, e75472.	1.1	2
74	Zygotic Porcn Paternal Allele Deletion in Mice to Model Human Focal Dermal Hypoplasia. PLoS ONE, 2013, 8, e79139.	1.1	9
75	Intercellular Interactions, Position, and Polarity in Establishing Blastocyst Cell Lineages and Embryonic Axes. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008235-a008235.	2.3	66
76	Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3389-90; author reply E3391-2.	3.3	44
77	Mature cells can be rejuvenated. Nature, 2012, 492, 56-56.	13.7	12
78	The mammalian gene function resource: the international knockout mouse consortium. Mammalian Genome, 2012, 23, 580-586.	1.0	292
79	Tracing notochord-derived cells using a <i>Noto-cre</i> mouse: implications for intervertebral disc development. DMM Disease Models and Mechanisms, 2012, 5, 73-82.	1.2	175
80	Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012, 30, 876-882.	9.4	371
81	Cell-Surface Proteomics Identifies Lineage-Specific Markers of Embryo-Derived Stem Cells. Developmental Cell, 2012, 22, 887-901.	3.1	134
82	A novel <i>Phex</i> mutation in a new mouse model of hypophosphatemic rickets. Journal of Cellular Biochemistry, 2012, 113, 2432-2441.	1.2	16
83	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	16.1	31
84	Cytopenia induction by 5-fluorouracil identifies thrombopoietic mutants in sensitized ENU mutagenesis screens. Experimental Hematology, 2012, 40, 48-60.	0.2	7
85	BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Developmental Biology, 2012, 361, 90-102.	0.9	72
86	The Sweet Pee Model for Sglt2 Mutation. Journal of the American Society of Nephrology: JASN, 2011, 22, 113-123.	3.0	63
87	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
88	The Impact of Developmental Biology on Pluripotent Stem Cell Research: Successes and Challenges. Developmental Cell, 2011, 21, 20-23.	3.1	19
89	Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Developmental Biology, 2011, 355, 275-285.	0.9	132
90	A mouse is not a cow. Nature, 2011, 471, 457-458.	13.7	42

#	Article	IF	CITATIONS
91	Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord. Developmental Biology, 2011, 360, 415-425.	0.9	48
92	A novel ENU-generated truncation mutation lacking the spectrin-binding and C-terminal regulatory domains of Ank1 models severe hemolytic hereditary spherocytosis. Experimental Hematology, 2011, 39, 305-320.e2.	0.2	21
93	The V–ATPase a3 subunit mutation R740S is dominant negative and results in osteopetrosis in mice. Journal of Bone and Mineral Research, 2011, 26, 1484-1493.	3.1	32
94	Engineering the embryo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7659-7660.	3.3	15
95	Innovation as the core strategy for the future success of academic health centres. Canadian Journal of Surgery, 2011, 54, 150-151.	0.5	8
96	Heparan Sulfation–Dependent Fibroblast Growth Factor Signaling Maintains Embryonic Stem Cells Primed for Differentiation in a Heterogeneous State. Stem Cells, 2010, 28, 191-200.	1.4	122
97	Making the blastocyst: lessons from the mouse. Journal of Clinical Investigation, 2010, 120, 995-1003.	3.9	312
98	Global Chromatin Architecture Reflects Pluripotency and Lineage Commitment in the Early Mouse Embryo. PLoS ONE, 2010, 5, e10531.	1.1	233
99	Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development (Cambridge), 2010, 137, 2095-2105.	1.2	115
100	A Developmental Journey and Lessons Learned Along the Way. Molecular Biology of the Cell, 2010, 21, 9-10.	0.9	2
101	The genetics of induced pluripotency. Reproduction, 2010, 139, 35-44.	1.1	59
102	Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development (Cambridge), 2010, 137, 3383-3391.	1.2	189
103	Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10783-10790.	3.3	212
104	Phenotypic annotation of the mouse X chromosome. Genome Research, 2010, 20, 1154-1164.	2.4	75
105	FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development (Cambridge), 2010, 137, 715-724.	1.2	486
106	The role of FGF/Erk signaling in pluripotent cells. Development (Cambridge), 2010, 137, 3351-3360.	1.2	349
107	The Crumbs Complex Couples Cell Density Sensing to Hippo-Dependent Control of the TGF-Î2-SMAD Pathway. Developmental Cell, 2010, 19, 831-844.	3.1	602
108	Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development (Cambridge), 2010, 137, 395-403.	1.2	389

#	Article	IF	CITATIONS
109	Efficient Generation of Germ Line Transmitting Chimeras from C57BL/6N ES Cells by Aggregation with Outbred Host Embryos. PLoS ONE, 2010, 5, e11260.	1.1	102
110	Myh9 Q1443L Is a Novel Mouse Model of MYH9-Related Disorders. Blood, 2010, 116, 2527-2527.	0.6	0
111	Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods, 2009, 6, 370-376.	9.0	274
112	Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology. Molecular Systems Biology, 2009, 5, 279.	3.2	151
113	The Hippo Signaling Pathway Components Lats and Yap Pattern Tead4 Activity to Distinguish Mouse Trophectoderm from Inner Cell Mass. Developmental Cell, 2009, 16, 398-410.	3.1	867
114	Reprogramming to Pluripotency: From Frogs to Stem Cells. Cell, 2009, 138, 1047-1050.	13.5	7
115	iPS Cells: Mapping the Policy Issues. Cell, 2009, 139, 1032-1037.	13.5	68
116	Alternative Induced Pluripotent Stem Cell Characterization Criteria for In Vitro Applications. Cell Stem Cell, 2009, 4, 198-199.	5.2	64
117	The Challenge of Regulating Rapidly Changing Science: Stem Cell Legislation in Canada. Cell Stem Cell, 2009, 4, 285-288.	5.2	10
118	Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development (Cambridge), 2009, 136, 701-713.	1.2	518
119	Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. BMC Genomics, 2008, 9, 511.	1.2	76
120	Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Developmental Biology, 2008, 313, 594-602.	0.9	91
121	Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Developmental Biology, 2008, 313, 614-629.	0.9	305
122	Lymphatic vessel assembly is impaired in Aspp1-deficient mouse embryos. Developmental Biology, 2008, 316, 149-159.	0.9	48
123	Establishment of Endoderm Progenitors by SOX Transcription Factor Expression in Human Embryonic Stem Cells. Cell Stem Cell, 2008, 3, 182-195.	5.2	190
124	Krüppel-like factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs. Cell Stem Cell, 2008, 3, 555-567.	5.2	177
125	Stem Cells and Early Lineage Development. Cell, 2008, 132, 527-531.	13.5	292
126	Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. Journal of Experimental Medicine, 2008, 205, 1145-1153.	4.2	223

#	Article	IF	CITATIONS
127	Three-Dimensional Analysis of Vascular Development in the Mouse Embryo. PLoS ONE, 2008, 3, e2853.	1.1	174
128	Stem Cells from the Mammalian Blastocyst-Not All Stem Cells Are Alike Biology of Reproduction, 2008, 78, 234-234.	1.2	0
129	Baf60c is a nuclear Notch signaling component required for the establishment of left–right asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 846-851.	3.3	108
130	Adhesion Is Prerequisite, But Alone Insufficient, to Elicit Stem Cell Pluripotency. Journal of Neuroscience, 2007, 27, 5437-5447.	1.7	13
131	Anne McLaren (1927-2007). Science, 2007, 317, 609-609.	6.0	0
132	Crucial roles of Foxa2 in mouse anterior-posterior axis polarization via regulation of anterior visceral endoderm-specific genes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5919-5924.	3.3	46
133	Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes. Molecular Systems Biology, 2007, 3, 109.	3.2	64
134	A Mouse for All Reasons. Cell, 2007, 128, 9-13.	13.5	396
135	A New Partner for the International Knockout Mouse Consortium. Cell, 2007, 129, 235.	13.5	88
136	Live Imaging and Genetic Analysis of Mouse Notochord Formation Reveals Regional Morphogenetic Mechanisms. Developmental Cell, 2007, 13, 884-896.	3.1	163
137	Stem cells and lineage development in the mammalian blastocyst. Reproduction, Fertility and Development, 2007, 19, 111.	0.1	100
138	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	6.0	104
139	Trophoblast-specific gene manipulation using lentivirus-based vectors. BioTechniques, 2007, 42, 317-325.	0.8	64
140	The magic brew. Nature, 2007, 448, 260-262.	13.7	37
141	Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007, 25, 803-816.	9.4	983
142	Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007, 445, 776-780.	13.7	1,515
143	Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. Journal of Clinical Investigation, 2007, 117, 3369-3382.	3.9	135
144	Retinoid Signaling Determines Germ Cell Fate in Mice. Science, 2006, 312, 596-600.	6.0	888

#	Article	IF	CITATIONS
145	Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling. Cell, 2006, 125, 173-186.	13.5	429
146	How Signaling Promotes Stem Cell Survival: Trophoblast Stem Cells and Shp2. Developmental Cell, 2006, 10, 275-276.	3.1	18
147	The Mouse Embryo Autonomously Acquires Anterior-Posterior Polarity at Implantation. Developmental Cell, 2006, 10, 451-459.	3.1	112
148	Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway. Developmental Cell, 2006, 10, 615-624.	3.1	804
149	Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood, 2006, 107, 111-117.	0.6	259
150	Cell and molecular regulation of the mouse blastocyst. Developmental Dynamics, 2006, 235, 2301-2314.	0.8	260
151	Zfp206 regulates ES cell gene expression and differentiation. Nucleic Acids Research, 2006, 34, 4780-4790.	6.5	45
152	Gene Trapping in Embryonic Stem Cells. Methods in Enzymology, 2006, 420, 136-162.	0.4	21
153	Vascular Endothelial Growth Factor A Signaling in the Podocyte-Endothelial Compartment Is Required for Mesangial Cell Migration and Survival. Journal of the American Society of Nephrology: JASN, 2006, 17, 724-735.	3.0	217
154	Ets2 is necessary in trophoblast for normal embryonic anteroposterior axis development. Development (Cambridge), 2006, 133, 1059-1068.	1.2	71
155	Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development (Cambridge), 2006, 133, 3379-3387.	1.2	73
156	Vascular Endothelial Growth Factor Directly Inhibits Primitive Neural Stem Cell Survival But Promotes Definitive Neural Stem Cell Survival. Journal of Neuroscience, 2006, 26, 6803-6812.	1.7	95
157	New Roles for Model Genetic Organisms in Understanding and Treating Human Disease: Report From The 2006 Genetics Society of America Meeting. Genetics, 2006, 172, 2025-2032.	1.2	35
158	Fibroblast growth factor receptor 1 (Fgfr1) is not essential for lens fiber differentiation in mice. Molecular Vision, 2006, 12, 15-25.	1.1	17
159	The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nature Biotechnology, 2005, 23, 795-797.	9.4	94
160	Genome-wide analysis of mouse transcripts using exon microarrays and factor graphs. Nature Genetics, 2005, 37, 991-996.	9.4	38
161	Endothelial cells and VEGF in vascular development. Nature, 2005, 438, 937-945.	13.7	881
162	Two mouse mutations mapped to chromosome 11 with differing morphologies but similar progressive inflammatory alopecia. Experimental Dermatology, 2005, 14, 373-379.	1.4	8

#	Article	IF	CITATIONS
163	Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development (Cambridge), 2005, 132, 1649-1661.	1.2	352
164	A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development (Cambridge), 2005, 132, 4375-4386.	1.2	211
165	Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development (Cambridge), 2005, 132, 2093-2102.	1.2	945
166	Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation. Cell, 2005, 123, 917-929.	13.5	1,062
167	Two mouse mutations mapped to chromosome 11 with differing morphologies but similar progressive inflammatory alopecia. Experimental Dermatology, 2005, 14, 373-9.	1.4	5
168	The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Genes and Development, 2004, 18, 1725-1736.	2.7	84
169	Cdx2 is essential for axial elongation in mouse development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7641-7645.	3.3	295
170	Characterization of Mouse Rsk4 as an Inhibitor of Fibroblast Growth Factor-RAS-Extracellular Signal-Regulated Kinase Signaling. Molecular and Cellular Biology, 2004, 24, 4255-4266.	1.1	56
171	Dosage-sensitive requirement for mouse Dll4 in artery development. Genes and Development, 2004, 18, 2474-2478.	2.7	486
172	A public gene trap resource for mouse functional genomics. Nature Genetics, 2004, 36, 543-544.	9.4	213
173	Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature, 2004, 432, 107-112.	13.7	478
174	The functional landscape of mouse gene expression. Journal of Biology, 2004, 3, 21.	2.7	259
175	Emerging Asymmetry and Embryonic Patterning in Early Mouse Development. Developmental Cell, 2004, 7, 155-164.	3.1	154
176	Foxh1 Is Essential for Development of the Anterior Heart Field. Developmental Cell, 2004, 7, 331-345.	3.1	173
177	Connexin31-deficient trophoblast stem cells: a model to analyze the role of gap junction communication in mouse placental development. Developmental Biology, 2004, 273, 63-75.	0.9	46
178	Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Seminars in Cell and Developmental Biology, 2004, 15, 573-581.	2.3	115
179	Activated Fps/Fes partially rescues the in vivo developmental potential of Flk1-deficient vascular progenitor cells. Blood, 2004, 103, 912-920.	0.6	15
180	FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO Journal, 2003, 22, 1811-1823.	3.5	168

#	Article	IF	CITATIONS
181	Cell Fate Decisions in Early Blood Vessel Formation. Trends in Cardiovascular Medicine, 2003, 13, 254-259.	2.3	69
182	A Novel In Vitro Model of Trophoblast-Mediated Decidual Blood Vessel Remodeling. Laboratory Investigation, 2003, 83, 1821-1828.	1.7	55
183	A balancing act. Nature, 2003, 425, 29-31.	13.7	5
184	Targeting mammalian genes—rats join in and mice move ahead. Nature Biotechnology, 2003, 21, 625-627.	9.4	7
185	Transgenic RNA interference in ES cell–derived embryos recapitulates a genetic null phenotype. Nature Biotechnology, 2003, 21, 559-561.	9.4	276
186	Retinoic acid signaling regulates murine bronchial tubule formation. Mechanisms of Development, 2003, 120, 691-700.	1.7	50
187	Vascular development and patterning: making the right choices. Current Opinion in Genetics and Development, 2003, 13, 408-412.	1.5	45
188	STEM CELLS: Enhanced: Setting Standards for Human Embryonic Stem Cells. Science, 2003, 300, 913-916.	6.0	326
189	The mouse genome sequencethe end of the tail, or just the beginning?. Genome Biology, 2003, 4, 109.	13.9	3
190	Lineage allocation and asymmetries in the early mouse embryo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1341-1349.	1.8	143
191	Control of Effector CD8+ T Cell Function by the Transcription Factor Eomesodermin. Science, 2003, 302, 1041-1043.	6.0	896
192	PRISM, a Generic Large Scale Proteomic Investigation Strategy for Mammals*S. Molecular and Cellular Proteomics, 2003, 2, 96-106.	2.5	145
193	Trophoblast expression of fms-like tyrosine kinase 1 is not required for the establishment of the maternal-fetal interface in the mouse placenta. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15637-15642.	3.3	71
194	Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development (Cambridge), 2003, 130, 4527-4537.	1.2	347
195	Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes and Development, 2003, 17, 380-393.	2.7	232
196	Mouse embryonic chimeras: tools for studying mammalian development. Development (Cambridge), 2003, 130, 6155-6163.	1.2	175
197	Gene Expression Profiling of Embryo-Derived Stem Cells Reveals Candidate Genes Associated With Pluripotency and Lineage Specificity. Genome Research, 2002, 12, 1921-1928.	2.4	200
198	Hyperphenylalaninemia and Impaired Glucose Tolerance in Mice Lacking the Bifunctional DCoH Gene. Journal of Biological Chemistry, 2002, 277, 28884-28891.	1.6	23

#	Article	IF	CITATIONS
199	Signaling Pathways in Vascular Development. Annual Review of Cell and Developmental Biology, 2002, 18, 541-573.	4.0	167
200	A monoclonal mouse?. Nature, 2002, 415, 967-969.	13.7	21
201	Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Research, 2002, 62, 3005-8.	0.4	183
202	FGF Signaling Regulates Mesoderm Cell Fate Specification and Morphogenetic Movement at the Primitive Streak. Developmental Cell, 2001, 1, 37-49.	3.1	593
203	Direct Neural Fate Specification from Embryonic Stem Cells. Neuron, 2001, 30, 65-78.	3.8	683
204	Liver Organogenesis Promoted by Endothelial Cells Prior to Vascular Function. Science, 2001, 294, 559-563.	6.0	803
205	Stem Cells from the Mammalian Blastocyst. Stem Cells, 2001, 19, 477-482.	1.4	210
206	Placental development: Lessons from mouse mutants. Nature Reviews Genetics, 2001, 2, 538-548.	7.7	1,135
207	Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERRbeta. Genes and Development, 2001, 15, 833-838.	2.7	231
208	The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes and Development, 2001, 15, 213-225.	2.7	397
209	FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes and Development, 2001, 15, 1257-1271.	2.7	191
210	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	6.0	125
211	The SH2 tyrosine phosphatase Shp2 is required for mammalian limb development. Nature Genetics, 2000, 24, 420-423.	9.4	112
212	Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nature Genetics, 2000, 25, 67-73.	9.4	146
213	Role of N-myc in the Developing Mouse Kidney. Developmental Biology, 2000, 222, 317-325.	0.9	47
214	In search of the tabula rasa of human cells. Nature Biotechnology, 1999, 17, 23-24.	9.4	6
215	Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Current Biology, 1999, 9, 470-480.	1.8	230
216	A repertoire of differentially expressed transcription factors that offers insight into mechanisms of human cytotrophoblast differentiation. , 1999, 25, 146-157.		99

#	Article	IF	CITATIONS
217	Expression of the T-box gene Eomesodermin during early mouse development. Mechanisms of Development, 1999, 81, 199-203.	1.7	146
218	Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation. Mechanisms of Development, 1999, 87, 129-142.	1.7	93
219	A Mouse Cerberus/Dan-Related Gene Family. Developmental Biology, 1999, 209, 98-110.	0.9	262
220	Multiple Developmental Roles of VEGF Suggested by a LacZ-Tagged Allele. Developmental Biology, 1999, 212, 307-322.	0.9	259
221	Neural Induction and Patterning in the Mouse in the Absence of the Node and Its Derivatives. Developmental Biology, 1999, 216, 535-549.	0.9	87
222	Distinct Neural Stem Cells Proliferate in Response to EGF and FGF in the Developing Mouse Telencephalon. Developmental Biology, 1999, 208, 166-188.	0.9	742
223	Chimeras and mosaics in mouse mutant analysis. Trends in Genetics, 1998, 14, 358-363.	2.9	115
224	Mash2 is expressed in oogenesis and preimplantation development but is not required for blastocyst formation. Mechanisms of Development, 1998, 73, 183-191.	1.7	62
225	Promotion of Trophoblast Stem Cell Proliferation by FGF4. , 1998, 282, 2072-2075.		1,221
226	Regulation of a Transcription Factor Network Required for Differentiation and Metabolism. , 1998, 281, 692-695.		304
227	Mash2 Acts Cell Autonomously in Mouse Spongiotrophoblast Development. Developmental Biology, 1997, 190, 55-65.	0.9	207
228	A Requirement for Flk1 in Primitive and Definitive Hematopoiesis and Vasculogenesis. Cell, 1997, 89, 981-990.	13.5	848
229	Elements both 5′ and 3′ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mechanisms of Development, 1997, 67, 49-58.	1.7	53
230	Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-β. Nature, 1997, 388, 778-782.	13.7	380
231	The Tumor Suppressor Gene Brca1 Is Required for Embryonic Cellular Proliferation in the Mouse. Cell, 1996, 85, 1009-1023.	13.5	647
232	Regulation offlt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. , 1996, 207, 1-10.		103
233	Regulation of flt1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Developmental Dynamics, 1996, 207, 1-10.	0.8	4
234	Characterization of a gene trap insertion into a novel gene,cordon-bleu, expressed in axial structures of the gastrulating mouse embryo. Genesis, 1995, 17, 141-154.	3.1	65

#	Article	IF	CITATIONS
235	Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nature Genetics, 1995, 9, 235-242.	9.4	359
236	The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genetics, 1995, 10, 301-306.	9.4	249
237	Genome engineering: the new mouse genetics. Nature Medicine, 1995, 1, 592-594.	15.2	111
238	Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995, 376, 62-66.	13.7	3,666
239	Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 1995, 376, 66-70.	13.7	2,423
240	Fibroblast growth factors in mammalian development. Current Opinion in Genetics and Development, 1995, 5, 485-491.	1.5	167
241	A Novel Regulatory Region Is Required for Trophoblast-Specific Transcription in Transgenic Mice. Developmental Biology, 1995, 171, 615-626.	0.9	57
242	Mice lacking all isoforms of retinoic acid receptor \hat{I}^2 develop normally and are susceptible to the teratogenic effects of retinoic acid. Mechanisms of Development, 1995, 53, 61-71.	1.7	129
243	Development of the extraembryonic lineages. Seminars in Developmental Biology, 1995, 6, 237-247.	1.3	56
244	Essential role of Mash-2 in extraembryonic development. Nature, 1994, 371, 333-336.	13.7	588
245	HNF-3Î ² is essential for node and notochord formation in mouse development. Cell, 1994, 78, 561-574.	13.5	950
246	brg1: A Putative Murine Homologue of the Drosophila brahma Gene, a Homeotic Gene Regulator. Developmental Biology, 1994, 161, 229-242.	0.9	91
247	The Genomic Structure of an Insertional Mutation in the Dystonia Musculorum Locus. Genomics, 1994, 20, 371-376.	1.3	33
248	Pattern formation and developmental mechanisms. Current Opinion in Genetics and Development, 1994, 4, 499-501.	1.5	0
249	Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature, 1993, 365, 87-89.	13.7	281
250	Immortal germ cells?. Current Biology, 1993, 3, 47-49.	1.8	27
251	The mouse Enhancer trap locus 1 (Etl-1): a novel mammalian gene related to Drosophila and yeast transcriptional regulator genes. Mechanisms of Development, 1992, 39, 111-123.	1.7	43
252	Expression analysis of a Notch homologue in the mouse embryo. Developmental Biology, 1992, 154, 377-387.	0.9	230

#	Article	IF	CITATIONS
253	Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Developmental Biology, 1992, 152, 75-88.	0.9	143
254	Close linkage of retinoic acid receptor genes with homeobox- and keratin-encoding genes on paralogous segments of mouse Chromosomes 11 and 15. Mammalian Genome, 1992, 3, 202-208.	1.0	23
255	Gene disruption in mammals. Current Opinion in Genetics and Development, 1991, 1, 236-240.	1.5	15
256	Neuronal lineages in chimeric mouse forebrain are segregated between compartments and in the rostrocaudal and radial planes. Developmental Biology, 1990, 141, 70-83.	0.9	46
257	Identification and mutation of genes involved in cell lineage development in the mammalian embryo. Cell Differentiation and Development, 1989, 27, 50.	0.4	0
258	Production of a mutation in the gene by homologous recombination in embryonic stem cells. Cell Differentiation and Development, 1989, 27, 57.	0.4	14
259	Towards a molecular-genetic analysis of mammalian development. Trends in Genetics, 1989, 5, 277-283.	2.9	77
260	Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature, 1989, 338, 153-156.	13.7	210
261	Expression of the c-fms proto-oncogene and of the cytokine, CSF-1, during mouse embryogenesis. Developmental Biology, 1989, 133, 284-294.	0.9	181
262	Cell-lineage-specific expression of the mouse hsp68 gene during embryogenesis. Developmental Biology, 1987, 121, 342-348.	0.9	41
263	Mouse embryonic cells become susceptible to CTL lysis after midgestation. Cellular Immunology, 1987, 104, 355-365.	1.4	29
264	Degree of methylation of transgenes is dependent on gamete of origin. Nature, 1987, 328, 251-254.	13.7	411
265	Mammalian Cell Genetics. Martin L. Hooper. Quarterly Review of Biology, 1986, 61, 540-541.	0.0	0
266	DNA methylation in extraembryonic lineages of mammals. Trends in Genetics, 1985, 1, 89-93.	2.9	42
267	Cell lineage-specific undermethylation of mouse repetitive DNA. Nature, 1984, 307, 284-286.	13.7	230
268	RECRUITMENT OF CYTOTOXIC CELLS BY ECTOPIC GRAFTS OF XENOGENEIC, BUT NOT ALLOGENEIC, TROPHOBLAST. Transplantation, 1984, 37, 84-90.	0.5	14
269	Studies of cytotoxic cells in dying embryos in the MUS caroli-MUS musculus pregnancy model system. Journal of Reproductive Immunology, 1983, 5, 74.	0.8	2
270	Histological and immunological studies of post implantation death of Mus caroli embryos in the Mus musculus uterus. Journal of Reproductive Immunology, 1982, 4, 277-293.	0.8	64

#	Article	IF	CITATIONS
271	Maternal X chromosome expression in mouse chorionic ectoderm. Genesis, 1979, 1, 123-132.	3.1	33
272	The Role of CDX2 as a Lineage Specific Transcriptional Repressor for Pluripotent Network During Trophectoderm and Inner Cell Mass Specification. SSRN Electronic Journal, 0, , .	0.4	0
273	Rapid and specific degradation of endogenous proteins in mouse models using auxin-inducible degrons. ELife, 0, 11, .	2.8	15