Geoffrey Lilley Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4182014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nature Medicine, 1998, 4, 397-402.	15.2	640
2	A soluble receptor for interleukin- $1\hat{l}^2$ encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. Cell, 1992, 71, 153-167.	13.5	478
3	Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species soecificity. Cell, 1995, 81, 551-560.	13.5	467
4	The formation and function of extracellular enveloped vaccinia virus. Journal of General Virology, 2002, 83, 2915-2931.	1.3	444
5	Poxvirus genomes: a phylogenetic analysis. Journal of General Virology, 2004, 85, 105-117.	1.3	339
6	Vaccinia virus protein A46R targets multiple Toll-like–interleukin-1 receptor adaptors and contributes to virulence. Journal of Experimental Medicine, 2005, 201, 1007-1018.	4.2	335
7	The Poxvirus Protein A52R Targets Toll-like Receptor Signaling Complexes to Suppress Host Defense. Journal of Experimental Medicine, 2003, 197, 343-351.	4.2	334
8	Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. Journal of General Virology, 2013, 94, 2367-2392.	1.3	299
9	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
10	The Vaccinia Virus Soluble Alpha/Beta Interferon (IFN) Receptor Binds to the Cell Surface and Protects Cells from the Antiviral Effects of IFN. Journal of Virology, 2000, 74, 11230-11239.	1.5	237
11	A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology, 1992, 188, 801-810.	1.1	222
12	Vaccinia Virus Gene A36R Encodes a Mr 43-50 K Protein on the Surface of Extracellular Enveloped Virus. Virology, 1994, 204, 376-390.	1.1	222
13	The Vaccinia Virus 42-kDa Envelope Protein Is Required for the Envelopment and Egress of Extracellular Virus and for Virus Virulence. Virology, 1993, 194, 627-637.	1.1	214
14	Vaccinia virus utilizes microtubules for movement to the cell surface. Journal of Cell Biology, 2001, 154, 389-402.	2.3	208
15	Vaccinia virus morphogenesis and dissemination. Trends in Microbiology, 2008, 16, 472-479.	3.5	204
16	17th Century Variola Virus Reveals the Recent History of Smallpox. Current Biology, 2016, 26, 3407-3412.	1.8	197
17	Repulsion of Superinfecting Virions: A Mechanism for Rapid Virus Spread. Science, 2010, 327, 873-876.	6.0	190
18	Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. Journal of General Virology, 2007, 88, 1656-1666.	1.3	153

#	Article	IF	CITATIONS
19	Vaccinia Virus Protein C6 Is a Virulence Factor that Binds TBK-1 Adaptor Proteins and Inhibits Activation of IRF3 and IRF7. PLoS Pathogens, 2011, 7, e1002247.	2.1	146
20	Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO Journal, 2012, 31, 4204-4220.	3.5	143
21	The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. Journal of General Virology, 2002, 83, 855-872.	1.3	143
22	Inhibition of lκB Kinase by Vaccinia Virus Virulence Factor B14. PLoS Pathogens, 2008, 4, e22.	2.1	138
23	Vaccinia Virus Proteins A52 and B14 Share a Bcl-2–Like Fold but Have Evolved to Inhibit NF-κB rather than Apoptosis. PLoS Pathogens, 2008, 4, e1000128.	2.1	136
24	Vaccinia Virus Intracellular Mature Virions Contain only One Lipid Membrane. Journal of Virology, 1999, 73, 1503-1517.	1.5	132
25	Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. Journal of General Virology, 2005, 86, 1279-1290.	1.3	128
26	Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. Journal of General Virology, 2002, 83, 1977-1986.	1.3	119
27	Interactions between Vaccinia Virus IEV Membrane Proteins and Their Roles in IEV Assembly and Actin Tail Formation. Journal of Virology, 1999, 73, 2863-2875.	1.5	118
28	The exit of Vaccinia virus from infected cells. Virus Research, 2004, 106, 189-197.	1.1	115
29	The vaccinia virus A27L protein is needed for the microtubule-dependent transport of intracellular mature virus particles. Microbiology (United Kingdom), 2000, 81, 47-58.	0.7	110
30	An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nature Immunology, 2022, 23, 50-61.	7.0	110
31	The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. Journal of General Virology, 2002, 83, 1965-1976.	1.3	108
32	Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science, 2020, 369, .	6.0	108
33	A New Inhibitor of Apoptosis from Vaccinia Virus and Eukaryotes. PLoS Pathogens, 2007, 3, e17.	2.1	103
34	The Vaccinia Virus A36R Protein Is a Type Ib Membrane Protein Present on Intracellular but Not Extracellular Enveloped Virus Particles. Virology, 2000, 271, 26-36.	1.1	102
35	Vaccinia Virus Motility. Annual Review of Microbiology, 2003, 57, 323-342.	2.9	102
36	Smallpox: anything to declare?. Nature Reviews Immunology, 2002, 2, 521-527.	10.6	101

#	Article	IF	CITATIONS
37	A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. Journal of General Virology, 1999, 80, 2751-2755.	1.3	100
38	Vaccinia virus cores are transported on microtubules. Journal of General Virology, 2003, 84, 2443-2458.	1.3	97
39	Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. Journal of General Virology, 2005, 86, 1589-1596.	1.3	95
40	Poxvirus Targeting of E3 Ligase β-TrCP by Molecular Mimicry: A Mechanism to Inhibit NF-κB Activation and Promote Immune Evasion and Virulence. PLoS Pathogens, 2013, 9, e1003183.	2.1	95
41	Smallpox in the Post-Eradication Era. Viruses, 2020, 12, 138.	1.5	95
42	A Mechanism for the Inhibition of DNA-PK-Mediated DNA Sensing by a Virus. PLoS Pathogens, 2013, 9, e1003649.	2.1	94
43	Vaccinia Virus F12L Protein Is Required for Actin Tail Formation, Normal Plaque Size, and Virulence. Journal of Virology, 2000, 74, 11654-11662.	1.5	86
44	The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. Journal of General Virology, 2002, 83, 195-207.	1.3	82
45	A study of the vaccinia virus interferon-Î ³ receptor and its contribution to virus virulence. Journal of General Virology, 2002, 83, 1953-1964.	1.3	81
46	Virus-Induced Cell Motility. Journal of Virology, 1998, 72, 1235-1243.	1.5	77
47	Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. Journal of General Virology, 2006, 87, 29-38.	1.3	75
48	Vaccinia Virus CrmE Encodes a Soluble and Cell Surface Tumor Necrosis Factor Receptor That Contributes to Virus Virulence. Virology, 2002, 292, 285-298.	1.1	73
49	Inhibition of Apoptosis and NF-κB Activation by Vaccinia Protein N1 Occur via Distinct Binding Surfaces and Make Different Contributions to Virulence. PLoS Pathogens, 2011, 7, e1002430.	2.1	73
50	Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. Journal of General Virology, 2002, 83, 209-222.	1.3	73
51	Steroid Hormone Synthesis by Vaccinia Virus Suppresses the Inflammatory Response to Infection. Journal of Experimental Medicine, 2003, 197, 1269-1278.	4.2	70
52	The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. Journal of General Virology, 2002, 83, 2833-2844.	1.3	67
53	How vaccinia virus has evolved to subvert the host immune response. Journal of Structural Biology, 2011, 175, 127-134.	1.3	66
54	Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. Journal of General Virology, 2013, 94, 2070-2081.	1.3	66

#	Article	IF	CITATIONS
55	A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. Journal of General Virology, 2003, 84, 1973-1983.	1.3	65
56	Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. Journal of General Virology, 2005, 86, 2955-2960.	1.3	63
57	A mechanism for induction of a hypoxic response by vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12444-12449.	3.3	63
58	The vaccinia virus A41L protein is a soluble 30ÂkDa glycoprotein that affects virus virulence. Journal of General Virology, 2001, 82, 2095-2105.	1.3	63
59	An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. Journal of General Virology, 2005, 86, 991-1000.	1.3	61
60	hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2. Journal of Cell Biology, 2013, 202, 699-713.	2.3	58
61	Inhibition of type I and type III interferons by a secreted glycoprotein from Yaba-like disease virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9822-9827.	3.3	56
62	Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. Journal of General Virology, 2006, 87, 1451-1458.	1.3	55
63	Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2. PLoS Pathogens, 2016, 12, e1005955.	2.1	54
64	How Does Vaccinia Virus Interfere With Interferon?. Advances in Virus Research, 2018, 100, 355-378.	0.9	54
65	Histone deacetylase 4 promotes type I interferon signaling, restricts DNA viruses, and is degraded via vaccinia virus protein C6. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11997-12006.	3.3	54
66	An investigation of incorporation of cellular antigens into vaccinia virus particles. Journal of General Virology, 2002, 83, 2347-2359.	1.3	54
67	The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. Journal of General Virology, 2003, 84, 2459-2471.	1.3	52
68	Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. Journal of General Virology, 2010, 91, 2221-2229.	1.3	52
69	Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence. Journal of General Virology, 2012, 93, 2098-2108.	1.3	51
70	Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory. Viruses, 2018, 10, 101.	1.5	51
71	Quantitative Temporal Proteomic Analysis of Vaccinia Virus Infection Reveals Regulation of Histone Deacetylases by an Interferon Antagonist. Cell Reports, 2019, 27, 1920-1933.e7.	2.9	50
72	Vaccinia Virus Protein A49 Is an Unexpected Member of the B-cell Lymphoma (Bcl)-2 Protein Family. Journal of Biological Chemistry, 2015, 290, 5991-6002.	1.6	49

#	Article	IF	CITATIONS
73	Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection. Journal of General Virology, 2013, 94, 1647-1657.	1.3	48
74	Vaccinia virus evasion of regulated cell death. Immunology Letters, 2017, 186, 68-80.	1.1	47
75	DNA-PK Is Targeted by Multiple Vaccinia Virus Proteins to Inhibit DNA Sensing. Cell Reports, 2018, 25, 1953-1965.e4.	2.9	47
76	Six-transmembrane Topology for Golgi Anti-apoptotic Protein (GAAP) and Bax Inhibitor 1 (BI-1) Provides Model for the Transmembrane Bax Inhibitor-containing Motif (TMBIM) Family. Journal of Biological Chemistry, 2012, 287, 15896-15905.	1.6	45
77	The vaccinia virus soluble interferon-Î ³ receptor is a homodimer. Journal of General Virology, 2002, 83, 545-549.	1.3	45
78	Vaccinia virus semaphorin A39R is a 50–55ÂkDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. Journal of General Virology, 2001, 82, 2083-2093.	1.3	43
79	Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. Journal of General Virology, 2008, 89, 2377-2387.	1.3	42
80	A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism. Journal of General Virology, 2015, 96, 395-407.	1.3	41
81	Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein. Journal of General Virology, 2005, 86, 2961-2968.	1.3	39
82	Vaccinia Protein F12 Has Structural Similarity to Kinesin Light Chain and Contains a Motor Binding Motif Required for Virion Export. PLoS Pathogens, 2010, 6, e1000785.	2.1	39
83	The vaccinia virus A40R gene product is a nonstructural, type II membrane glycoprotein that is expressed at the cell surface. Journal of General Virology, 1999, 80, 2137-2148.	1.3	39
84	Vaccinia Virus Inhibits NF-ÂB-Dependent Gene Expression Downstream of p65 Translocation. Journal of Virology, 2014, 88, 3092-3102.	1.5	38
85	Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. Journal of General Virology, 2008, 89, 2992-2997.	1.3	37
86	Phosphorylation of ribosomal proteins by the vaccinia virus B1R protein kinase. FEBS Letters, 1993, 321, 27-31.	1.3	34
87	Vaccinia virus kelch protein A55 is a 64â€kDa intracellular factor that affects virus-induced cytopathic effect and the outcome of infection in a murine intradermal model. Journal of General Virology, 2006, 87, 1521-1529.	1.3	34
88	Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy. Journal of General Virology, 2013, 94, 1121-1126.	1.3	34
89	Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biology, 2017, 7, 170045.	1.5	34
90	Vaccinia Virus Gene B7R Encodes an 18-kDa Protein That is Resident in the Endoplasmic Reticulum and Affects Virus Virulence. Virology, 2000, 267, 65-79.	1.1	33

#	Article	IF	CITATIONS
91	Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration. Journal of Biological Chemistry, 2015, 290, 11785-11801.	1.6	33
92	Intradermal immune response after infection with Vaccinia virus. Journal of General Virology, 2006, 87, 1157-1161.	1.3	33
93	Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence. Journal of General Virology, 2007, 88, 1667-1676.	1.3	31
94	Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium. Journal of Biological Chemistry, 2013, 288, 13057-13067.	1.6	30
95	Vaccinia virus gene F3L encodes an intracellular protein that affects the innate immune response. Journal of General Virology, 2007, 88, 1917-1921.	1.3	30
96	Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence. PLoS Pathogens, 2015, 11, e1005151.	2.1	29
97	Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nature Microbiology, 2022, 7, 154-168.	5.9	29
98	Vaccinia Virus BBK E3 Ligase Adaptor A55 Targets Importin-Dependent NF-κB Activation and Inhibits CD8 ⁺ T-Cell Memory. Journal of Virology, 2019, 93, .	1.5	28
99	A mutational analysis of the vaccinia virus B5R protein. Journal of General Virology, 2001, 82, 1199-1213.	1.3	28
100	Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions. Journal of General Virology, 2012, 93, 1876-1886.	1.3	27
101	Enhancement of <scp>CD</scp> 8 ⁺ Tâ€cell memory by removal of a vaccinia virus nuclear factorâ€ <i>ΰ</i> B inhibitor. Immunology, 2015, 145, 34-49.	2.0	27
102	Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. Journal of General Virology, 2002, 83, 323-332.	1.3	27
103	Vaccinia virus lacking the Bcl-2-like protein N1 induces a stronger natural killer cell response to infection. Journal of General Virology, 2008, 89, 2877-2881.	1.3	27
104	Intracellular sensing of viral DNA by the innate immune system. Microbes and Infection, 2014, 16, 1002-1012.	1.0	26
105	NF-κB activation is a turn on for vaccinia virus phosphoprotein A49 to turn off NF-κB activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5699-5704.	3.3	26
106	Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. Journal of General Virology, 2009, 90, 1582-1591.	1.3	25
107	A new member of the interleukin 10-related cytokine family encoded by a poxvirus. Journal of General Virology, 2004, 85, 1401-1412.	1.3	24
108	Analysis of the anti-apoptotic activity of four vaccinia virus proteins demonstrates that B13 is the most potent inhibitor in isolation and during viral infection. Journal of General Virology, 2014, 95, 2757-2768.	1.3	23

#	Article	IF	CITATIONS
109	The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biology, 2020, 21, 175.	3.8	22
110	Induction of CD8 + T″ymphocyte responses to a secreted antigen of Mycobacterium tuberculosis by an attenuated vaccinia virus. Immunology and Cell Biology, 2001, 79, 569-575.	1.0	21
111	Increased attenuation but decreased immunogenicity by deletion of multiple vaccinia virus immunomodulators. Vaccine, 2016, 34, 4827-4834.	1.7	21
112	Vaccinia virus virulence factor N1 can be ubiquitylated on multiple lysine residues. Journal of General Virology, 2014, 95, 2038-2049.	1.3	20
113	Vaccinia Virus Protein Complex F12/E2 Interacts with Kinesin Light Chain Isoform 2 to Engage the Kinesin-1 Motor Complex. PLoS Pathogens, 2015, 11, e1004723.	2.1	19
114	Serological responses in humans to the smallpox vaccine LC16m8. Journal of General Virology, 2011, 92, 2405-2410.	1.3	19
115	Yaba-like disease virus protein 7L is a cell-surface receptor for chemokine CCL1. Journal of General Virology, 2003, 84, 3325-3336.	1.3	18
116	Multiple Bcl-2 family immunomodulators from vaccinia virus regulate MAPK/AP-1 activation. Journal of General Virology, 2016, 97, 2346-2351.	1.3	18
117	Vaccinia virus protein A49 activates Wnt signalling by targetting the E3 ligase β-TrCP. Journal of General Virology, 2017, 98, 3086-3092.	1.3	18
118	Yaba-like disease virus protein Y144R, a member of the complement control protein family, is present on enveloped virions that are associated with virus-induced actin tails. Journal of General Virology, 2004, 85, 1279-1290.	1.3	16
119	Molecular basis of cullin-3 (Cul3) ubiquitin ligase subversion by vaccinia virus protein A55. Journal of Biological Chemistry, 2019, 294, 6416-6429.	1.6	14
120	Stimulation of cell invasion by the Golgi Ion Channel GAAP/TMBIM4 via an H2O2-Dependent Mechanism. Redox Biology, 2020, 28, 101361.	3.9	14
121	Novel Role for ESCRT-III Component CHMP4C in the Integrity of the Endocytic Network Utilized for Herpes Simplex Virus Envelopment. MBio, 2021, 12, .	1.8	14
122	Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol. Journal of General Virology, 2018, 99, 790-804.	1.3	14
123	Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein. Journal of General Virology, 2010, 91, 1823-1827.	1.3	14
124	Vaccinia virus proteins <scp>A36</scp> and <scp>F12</scp> / <scp>E2</scp> show strong preferences for different <scp>kinesin light chain</scp> isoforms. Traffic, 2017, 18, 505-518.	1.3	12
125	Differential processing and presentation of the H-2Db-restricted epitope from two different strains of influenza virus nucleoprotein. Journal of General Virology, 2001, 82, 1069-1074.	1.3	12
126	The vaccinia virus B9R protein is a 6ÂkDa intracellular protein that is non-essential for virus replication and virulence. Journal of General Virology, 2002, 83, 873-878.	1.3	11

#	Article	IF	CITATIONS
127	Comment on the paper by Shchelkunov et al. (1993) FEBS Letters 319, 80-83. Two genes encoding poxvirus cytokine receptors are disrupted or deleted in variola virus. FEBS Letters, 1993, 335, 136-137.	1.3	10
128	The actin nucleator Spir-1 is a virus restriction factor that promotes innate immune signalling. PLoS Pathogens, 2022, 18, e1010277.	2.1	10
129	Vaccinia virus egress mediated by virus protein A36 is reliant on the F12 protein. Journal of General Virology, 2017, 98, 1500-1514.	1.3	9
130	Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host and Microbe, 2022, 30, 357-372.e11.	5.1	9
131	Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. Journal of General Virology, 2006, 87, 809-816.	1.3	8
132	The crystal structure of vaccinia virus protein E2 and perspectives on the prediction of novel viral protein folds. Journal of General Virology, 2022, 103, .	1.3	8
133	Smallpox vaccination induces a substantial increase in commensal skin bacteria that promote pathology and influence the host response. PLoS Pathogens, 2022, 18, e1009854.	2.1	8
134	Vaccinia Virus Protein C6: A Multifunctional Interferon Antagonist. Advances in Experimental Medicine and Biology, 2018, 1052, 1-7.	0.8	7
135	Transport and stability of the vaccinia virus A34 protein is affected by the A33 protein. Journal of General Virology, 2013, 94, 720-725.	1.3	7
136	DDX50 Is a Viral Restriction Factor That Enhances IRF3 Activation. Viruses, 2022, 14, 316.	1.5	6
137	Selective modulation of cell surface proteins during vaccinia infection: A resource for identifying viral immune evasion strategies. PLoS Pathogens, 2022, 18, e1010612.	2.1	6
138	Enhanced Efficacy of Vaccination With Vaccinia Virus in Old vs. Young Mice. Frontiers in Immunology, 2019, 10, 1780.	2.2	5
139	Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis. Journal of General Virology, 2017, 98, 2543-2555.	1.3	5
140	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	1.3	4
141	Leaky scanning translation generates a second A49 protein that contributes to vaccinia virus virulence. Journal of General Virology, 2020, 101, 533-541.	1.3	4
142	Rapid Spreading and Immune Evasion by Vaccinia Virus. Advances in Experimental Medicine and Biology, 2014, 808, 65-76.	0.8	3
143	Cell motility and cell morphology: How some viruses take control. Expert Reviews in Molecular Medicine, 1999, 1, 1-16.	1.6	2
144	Research with variola virus after smallpox eradication: Development of a mouse model for variola virus infection. PLoS Pathogens, 2021, 17, e1009911.	2.1	2

#	Article	IF	CITATIONS
145	Dysregulation of Cellular VRK1, BAF, and Innate Immune Signaling by the Vaccinia Virus B12 Pseudokinase. Journal of Virology, 2022, 96, e0039822.	1.5	2
146	Le virus de la vaccine, un virus qui se propage plus vite qu'il ne se réplique. Virologie, 2012, 16, 119-121.	0.1	0