
Henry J Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4181981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Building a Foundation for Precision Onco-Nutrition: Docosahexaenoic Acid and Breast Cancer. Cancers, 2022, 14, 157.	3.7	3
2	Relandscaping the Gut Microbiota with a Whole Food: Dose–Response Effects to Common Bean. Foods, 2022, 11, 1153.	4.3	9
3	The role of pulses in improving human health: A review. , 2022, 4, .		18
4	Diet and cancer risk reduction: The role of diet-microbiota interactions and microbial metabolites. Seminars in Cancer Biology, 2021, 70, 53-60.	9.6	23
5	Lipoxygenase catalyzed metabolites derived from docosahexaenoic acid are promising antitumor agents against breast cancer. Scientific Reports, 2021, 11, 410.	3.3	6
6	Micronutrients and the Immune System: Some Is Good but We Need to Know More. Nutrients, 2021, 13, 285.	4.1	0
7	Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients, 2021, 13, 1100.	4.1	37
8	Measuring Dietary Botanical Diversity as a Proxy for Phytochemical Exposure. Nutrients, 2021, 13, 1295.	4.1	6
9	The Triple Health Threat of Diabetes, Obesity, and Cancer—Epidemiology, Disparities, Mechanisms, and Interventions. Obesity, 2021, 29, 954-959.	3.0	21
10	Green Tea Suppresses Amyloid Î ² Levels and Alleviates Cognitive Impairment by Inhibiting APP Cleavage and Preventing Neurotoxicity in 5XFAD Mice. Molecular Nutrition and Food Research, 2021, 65, e2100626.	3.3	11
11	Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Current Developments in Nutrition, 2021, 5, nzaa180.	0.3	23
12	The Dietary Guidelines for Americans (2020–2025): Pulses, Dietary Fiber, and Chronic Disease Risk—A Call for Clarity and Action. Nutrients, 2021, 13, 4034.	4.1	17
13	Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses. Nutrients, 2021, 13, 3992.	4.1	19
14	Pre-Clinical Insights into the Iron and Breast Cancer Hypothesis. Biomedicines, 2021, 9, 1652.	3.2	5
15	It Is Really Simple: Foods and Human Health, The Whole Story. Nutrients, 2020, 12, 2102.	4.1	0
16	Motivating Pulse-Centric Eating Patterns to Benefit Human and Environmental Well-Being. Nutrients, 2020, 12, 3500.	4.1	34
17	Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. Journal of Food Science, 2020, 85, 926-935.	3.1	34
18	Pulse Crop Effects on Gut Microbial Populations, Intestinal Function, and Adiposity in a Mouse Model of Diet-Induced Obesity. Nutrients, 2020, 12, 593.	4.1	17

#	Article	IF	CITATIONS
19	Effect of Common Bean Consumption on the Gut Associated Microbiome in an In Vivo Screening Model for Breast Cancer. , 2020, 61, .		2
20	Omega-3 Fatty Acids Responsive Proteins and Reduction in Breast Density in Obese Postmenopausal Women. Journal of Proteome Research, 2019, 18, 3461-3469.	3.7	0
21	Improving the Health Benefits of Snap Bean: Genome-Wide Association Studies of Total Phenolic Content. Nutrients, 2019, 11, 2509.	4.1	27
22	Improving human dietary choices through understanding of the tolerance and toxicity of pulse crop constituents. Current Opinion in Food Science, 2019, 30, 93-97.	8.0	19
23	Differences in chemical composition predictive of in vitro biological activity among commercially important cultivars of genus Camellia. Food Chemistry, 2019, 297, 124950.	8.2	3
24	Cell Signaling Pathways in Mammary Carcinoma Induced in Rats with Low versus High Inherent Aerobic Capacity. International Journal of Molecular Sciences, 2019, 20, 1506.	4.1	2
25	Dietary Bean Consumption and Human Health. Nutrients, 2019, 11, 3074.	4.1	5
26	White Kidney Bean (Phaseolus Vulgaris L.) Consumption Reduces Fat Accumulation in a Polygenic Mouse Model of Obesity. Nutrients, 2019, 11, 2780.	4.1	29
27	Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single <i>Camellia sinensis</i> Cultivar, Longjing 43. Journal of Agricultural and Food Chemistry, 2019, 67, 5423-5436.	5.2	151
28	Differences in Chemical Composition among Commercially Important Cultivars of Genus <i>Camellia</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 5457-5464.	5.2	7
29	Assuring that your cup of tea is risk-free. Current Opinion in Food Science, 2019, 30, 98-102.	8.0	2
30	Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean. Plant Genome, 2018, 11, 170074.	2.8	13
31	Docosahexaenoic Acid in Combination with Dietary Energy Restriction for Reducing the Risk of Obesity Related Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 28.	4.1	14
32	Inherent aerobic capacity-dependent differences in breast carcinogenesis. Carcinogenesis, 2017, 38, 920-928.	2.8	14
33	Carbohydrate Profile of a Dry Bean (Phaseolus vulgarisL.) Panel Encompassing Broad Genetic Variability for Cooking Time. Cereal Chemistry, 2017, 94, 135-141.	2.2	14
34	Effects of Intentional Weight Loss on Markers of Oxidative Stress, DNA Repair and Telomere Length - a Systematic Review. Obesity Facts, 2017, 10, 648-665.	3.4	33
35	Nutritional metabolomics and breast cancer risk in a prospective study. American Journal of Clinical Nutrition, 2017, 106, 637-649.	4.7	128
36	Beneficial Effects of Common Bean on Adiposity and Lipid Metabolism. Nutrients, 2017, 9, 998.	4.1	31

#	Article	IF	CITATIONS
37	Dietary Fiber Analysis of Four Pulses Using AOAC 2011.25: Implications for Human Health. Nutrients, 2016, 8, 829.	4.1	49
38	The Obesity-Breast Cancer Conundrum: An Analysis of the Issues. International Journal of Molecular Sciences, 2016, 17, 989.	4.1	44
39	Premenopausal Obesity and Breast Cancer Growth Rates in a Rodent Model. Nutrients, 2016, 8, 214.	4.1	4
40	Principles of Biomedical Agriculture Applied to the Plant Family Theaceae To Identify Novel Interventions for Cancer Prevention and Control. Journal of Agricultural and Food Chemistry, 2016, 64, 2809-2814.	5.2	7
41	Effect of low or high glycemic load diets on experimentally induced mammary carcinogenesis in rats. Molecular Nutrition and Food Research, 2016, 60, 1416-1426.	3.3	11
42	Demonstrating a Nutritional Advantage to the Fast-Cooking Dry Bean (<i>Phaseolus vulgaris</i> L.). Journal of Agricultural and Food Chemistry, 2016, 64, 8592-8603.	5.2	40
43	Perspective: Closing the Dietary Fiber Gap: An Ancient Solution for a 21st Century Problem. Advances in Nutrition, 2016, 7, 623-626.	6.4	34
44	Training professionals to engage agriculture as an instrument of public health. Public Health, 2016, 139, 219-221.	2.9	0
45	Influence of Obesity on Breast Density Reduction by Omega-3 Fatty Acids: Evidence from a Randomized Clinical Trial. Cancer Prevention Research, 2016, 9, 275-282.	1.5	28
46	Total Phenolic Content and Associated Phenotypic Traits in a Diverse Collection of Snap Bean Cultivars. Journal of the American Society for Horticultural Science, 2016, 141, 3-11.	1.0	8
47	The Role of Omega-3 Fatty Acids in Breast Cancer Prevention. , 2016, , 51-81.		Ο
48	Impact of Weight Loss on Plasma Leptin and Adiponectin in Overweight-to-Obese Post Menopausal Breast Cancer Survivors. Nutrients, 2015, 7, 5156-5176.	4.1	24
49	Weight Loss Interventions for Breast Cancer Survivors: Impact of Dietary Pattern. PLoS ONE, 2015, 10, e0127366.	2.5	13
50	Combination of Antiestrogens and Omega-3 Fatty Acids for Breast Cancer Prevention. BioMed Research International, 2015, 2015, 1-10.	1.9	6
51	Effects of Metformin, Buformin, and Phenformin on the Post-Initiation Stage of Chemically Induced Mammary Carcinogenesis in the Rat. Cancer Prevention Research, 2015, 8, 518-527.	1.5	25
52	Impact of Energy Balance on Chemically Induced Mammary Carcinogenesis in a Rat. Energy Balance and Cancer, 2015, , 175-196.	0.2	0
53	Excess Weight Gain Accelerates 1-Methyl-1-Nitrosourea–Induced Mammary Carcinogenesis in a Rat Model of Premenopausal Breast Cancer. Cancer Prevention Research, 2014, 7, 310-318.	1.5	6
54	Dermcidin expression is associated with disease progression and survival among breast cancer patients. Breast Cancer Research and Treatment, 2014, 144, 299-306.	2.5	22

#	Article	IF	CITATIONS
55	Adaptation of the AOAC 2011.25 Integrated Total Dietary Fiber Assay To Determine the Dietary Fiber and Oligosaccharide Content of Dry Edible Beans. Journal of Agricultural and Food Chemistry, 2013, 61, 9719-9726.	5.2	27
56	High-dose sodium selenite toxicity cannot be prevented by the co-administration of pharmacological levels of epigallocatechin-3-gallate which in turn aggravates the toxicity. Food and Chemical Toxicology, 2013, 52, 36-41.	3.6	6
57	Defining the Role of Histone Deacetylases in the Inhibition of Mammary Carcinogenesis by Dietary Energy Restriction (DER): Effects of Suberoylanilide Hydroxamic Acid (SAHA) and DER in a Rat Model. Cancer Prevention Research, 2013, 6, 290-298.	1.5	9
58	Proteomic Changes Induced by Effective Chemopreventive Ratios of n-3:n-6 Fatty Acids and Tamoxifen against MNU-Induced Mammary Cancer in the Rat. Cancer Prevention Research, 2013, 6, 979-988.	1.5	6
59	Effects of limiting energy availability via diet and physical activity on mammalian target of rapamycin-related signaling in rat mammary carcinomas. Carcinogenesis, 2013, 34, 378-387.	2.8	18
60	Weight Change Patterns and Breast Cancer Risk: A Brief Review and Analysis. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 159-169.	0.9	4
61	Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (Phaseolus vulgaris L.). Carcinogenesis, 2012, 33, 226-232.	2.8	31
62	Physiological effects of bean (<i>Phaseolus vulgaris</i> L.) consumption on cellular signaling in cancer. Cell Cycle, 2012, 11, 835-836.	2.6	9
63	Identification of a Molecular Signature Underlying Inhibition of Mammary Carcinoma Growth by Dietary N-3 Fatty Acids. Cancer Research, 2012, 72, 3795-3806.	0.9	63
64	Effects of Energy Restriction and Wheel Running on Mammary Carcinogenesis and Host Systemic Factors in a Rat Model. Cancer Prevention Research, 2012, 5, 414-422.	1.5	38
65	A Systems Pharmacokinetic and Pharmacodynamic Approach to Identify Opportunities and Pitfalls in Energy Stress-Mediated Chemoprevention: The Use of Metformin and Other Biguanides. Current Drug Targets, 2012, 13, 1876-1884.	2.1	3
66	Dietary dry bean effects on hepatic expression of stress and toxicity-related genes in rats. British Journal of Nutrition, 2012, 108, S37-S45.	2.3	17
67	Metabolomic analysis of the effects of edible dry beans (<i>Phaseolus vulgaris</i> L.) on tissue lipid metabolism and carcinogenesis in rats. British Journal of Nutrition, 2012, 108, S155-S165.	2.3	17
68	Edible dry bean consumption (<i>Phaseolus vulgaris</i> L.) modulates cardiovascular risk factors and diet-induced obesity in rats and mice. British Journal of Nutrition, 2012, 108, S66-S73.	2.3	54
69	Effects of a Caloric Restriction Weight Loss Diet and Exercise on Inflammatory Biomarkers in Overweight/Obese Postmenopausal Women: A Randomized Controlled Trial. Cancer Research, 2012, 72, 2314-2326.	0.9	205
70	Metabolite Profiling of a Diverse Collection of Wheat Lines Using Ultraperformance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry. PLoS ONE, 2012, 7, e44179.	2.5	37
71	Effect of dietary patterns differing in carbohydrate and fat content on blood lipidand glucose profiles based on weight-loss success of breast-cancer survivors. Breast Cancer Research, 2012, 14, R1.	5.0	25
72	Effect of a low fat versus a low carbohydrate weight loss dietary intervention on biomarkers of long term survival in breast cancer patients ('CHOICE'): study protocol. BMC Cancer, 2011, 11, 287.	2.6	24

#	Article	IF	CITATIONS
73	Quantitative Assessment of Mammary Gland Density in Rodents Using Digital Image Analysis. Biological Procedures Online, 2011, 13, 4.	2.9	27
74	Mammary Gland Density Predicts the Cancer Inhibitory Activity of the N-3 to N-6 Ratio of Dietary Fat. Cancer Prevention Research, 2011, 4, 1675-1685.	1.5	25
75	Weight Cycling and Cancer: Weighing the Evidence of Intermittent Caloric Restriction and Cancer Risk. Cancer Prevention Research, 2011, 4, 1736-1742.	1.5	23
76	Chemoprevention of Breast Cancer by Fish Oil in Preclinical Models: Trials and Tribulations. Cancer Research, 2011, 71, 6091-6096.	0.9	50
77	Mammary Cancer in Rats. , 2011, , 245-255.		2
78	Metformin as an energy restriction mimetic agent for breast cancer prevention. Journal of Carcinogenesis, 2011, 10, 17.	2.5	39
79	Collection of Epithelial Cells from Rodent Mammary Gland Via Laser Capture Microdissection Yielding High-Quality RNA Suitable for Microarray Analysis. Biological Procedures Online, 2010, 12, 31-43.	2.9	10
80	Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using 'omics' technologies. BMC Genomics, 2010, 11, 686.	2.8	42
81	Vegetable and Fruit Intake and the Development of Cancer. , 2010, , 19-36.		7
82	Wheel Running–Induced Changes in Plasma Biomarkers and Carcinogenic Response in the 1-Methyl-1-Nitrosourea–Induced Rat Model for Breast Cancer. Cancer Prevention Research, 2010, 3, 1484-1492.	1.5	29
83	Wheel running, skeletal muscle aerobic capacity and 1-methyl-1-nitrosourea induced mammary carcinogenesis in the rat. Carcinogenesis, 2010, 31, 1279-1283.	2.8	11
84	Botanical Diversity in Vegetable and Fruit Intake. , 2010, , 1-17.		2
85	Characterization of Low Molecular Weight Chemical Fractions of Dry Bean (Phaseolus vulgaris) for Bioactivity Using Caenorhabditis elegans Longevity and Metabolite Fingerprinting. Journal of Agricultural and Food Chemistry, 2010, 58, 6697-6705.	5.2	12
86	A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis. Biological Procedures Online, 2010, 12, 9032.	2.9	8
87	A transfer-less, multi-well liquid culture feeding system for screening small molecules that affect the longevity of <i>Caenorhabditis elegans</i> . BioTechniques, 2009, 47, ix-xv.	1.8	8
88	Energetics and mammary carcinogenesis: effects of moderate-intensity running and energy intake on cellular processes and molecular mechanisms in rats. Journal of Applied Physiology, 2009, 106, 911-918.	2.5	27
89	Effects of Physical Activity and Restricted Energy Intake on Chemically Induced Mammary Carcinogenesis. Cancer Prevention Research, 2009, 2, 338-344.	1.5	34
90	Chapter 1 Biomedical Agriculture. Advances in Agronomy, 2009, , 1-54.	5.2	10

#	Article	IF	CITATIONS
91	Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis. IUBMB Life, 2009, 61, 895-901.	3.4	44
92	Functional food characteristics of potato cultivars (Solanum tuberosum L.): Phytochemical composition and inhibition of 1-methyl-1-nitrosourea induced breast cancer in rats. Journal of Food Composition and Analysis, 2009, 22, 571-576.	3.9	58
93	In Vitro Measures Used to Predict Anticancer Activity of Apple Cultivars and Their Comparison to Outcomes From a Rat Model of Experimentally Induced Breast Cancer. Nutrition and Cancer, 2009, 61, 510-517.	2.0	12
94	Chemical Composition and Mammary Cancer Inhibitory Activity of Dry Bean. Crop Science, 2009, 49, 179-186.	1.8	56
95	Modulation of the activities of AMPâ€activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2â€deoxyglucose. Molecular Carcinogenesis, 2008, 47, 616-628.	2.7	32
96	Effect of Nonmotorized Wheel Running on Mammary Carcinogenesis: Circulating Biomarkers, Cellular Processes, and Molecular Mechanisms in Rats. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 1920-1929.	2.5	55
97	Dietary Energy Restriction Modulates the Activity of AMP-Activated Protein Kinase, Akt, and Mammalian Target of Rapamycin in Mammary Carcinomas, Mammary Gland, and Liver. Cancer Research, 2008, 68, 5492-5499.	0.9	158
98	Mechanisms Associated with Dose-Dependent Inhibition of Rat Mammary Carcinogenesis by Dry Bean (Phaseolus vulgaris, L.). Journal of Nutrition, 2008, 138, 2091-2097.	2.9	52
99	Effects of Dietary Energy Restriction on Gene Regulation in Mammary Epithelial Cells. Cancer Research, 2007, 67, 12018-12025.	0.9	13
100	Whole-Food Sources of Vitamin A More Effectively Inhibit Female Rat Sexual Maturation, Mammary Gland Development, and Mammary Carcinogenesis than Retinyl Palmitate. Journal of Nutrition, 2007, 137, 1415-1422.	2.9	12
101	Dietary Botanical Diversity Affects the Reduction of Oxidative Biomarkers in Women due to High Vegetable and Fruit Intake. Journal of Nutrition, 2006, 136, 2207-2212.	2.9	53
102	Oxidative DNA Damage and Cancer Risk Assessment. Journal of Nutrition, 2006, 136, 2693S-2694S.	2.9	2
103	Pre-clinical investigations of physical activity and cancer: a brief review and analysis. Carcinogenesis, 2006, 27, 1946-1949.	2.8	16
104	8-Isoprostane F2α excretion is reduced in women by increased vegetable and fruit intake. American Journal of Clinical Nutrition, 2005, 82, 768-776.	4.7	75
105	Effect of cytological fixative and environmental conditions on nuclear morphometric characteristics of squamous epithelial cells in sputum. Cytometry Part B - Clinical Cytometry, 2005, 67B, 19-26.	1.5	1
106	Right-sided or segmental ulcerative colitis. British Journal of Surgery, 2005, 47, 337-351.	0.3	30
107	Effects of dietary energy repletion and IGF-1 infusion on the inhibition of mammary carcinogenesis by dietary energy restriction. Molecular Carcinogenesis, 2005, 42, 170-176.	2.7	41
108	In Vivo Investigation of Changes in Biomarkers of Oxidative Stress Induced by Plant Food Rich Diets. Journal of Agricultural and Food Chemistry, 2005, 53, 6126-6132.	5.2	58

#	Article	IF	CITATIONS
109	2-Deoxyglucose as an Energy Restriction Mimetic Agent: Effects on Mammary Carcinogenesis and on Mammary Tumor Cell Growth In vitro. Cancer Research, 2005, 65, 7023-7030.	0.9	134
110	Obesity as a Cancer Risk Factor. Nutrition and Disease Prevention, 2005, , .	0.1	0
111	Mechanisms Associating Obesity with Cancer Incidence. Nutrition and Disease Prevention, 2005, , 329-339.	0.1	0
112	Adrenalectomy Does Not Block the Inhibition of Mammary Carcinogenesis by Dietary Energy Restriction in Rats. Journal of Nutrition, 2004, 134, 1152-1156.	2.9	12
113	Weight Control and Breast Cancer Prevention: Are the Effects of Reduced Energy Intake Equivalent to Those of Increased Energy Expenditure?. Journal of Nutrition, 2004, 134, 3407S-3411S.	2.9	23
114	DNA Oxidation Products, Antioxidant Status, and Cancer Prevention. Journal of Nutrition, 2004, 134, 3186S-3187S.	2.9	29
115	Effect of Dietary Energy Restriction on Vascular Density during Mammary Carcinogenesis. Cancer Research, 2004, 64, 5643-5650.	0.9	43
116	Hormone-Induced Chromosomal Instability in p53-Null Mammary Epithelium. Cancer Research, 2004, 64, 5608-5616.	0.9	40
117	Identification of the Apoptosis Activation Cascade Induced in Mammary Carcinomas by Energy Restriction. Cancer Research, 2004, 64, 1541-1545.	0.9	36
118	Association between the T27C polymorphism in the cytochrome P450 c17? (CYP17) gene and risk factors for breast cancer. Breast Cancer Research and Treatment, 2004, 88, 217-230.	2.5	28
119	Increased Urinary 8-Isoprostaglandin F2α Is Associated With Lower Plasma Selenium Levels and Lower Vegetable and Fruit Intake in an Asbestos-Exposed Cohort at Risk for Lung Cancer. Chest, 2004, 125, 83S.	0.8	4
120	Biomarkers of Antioxidant Status and Cancer Prevention. Nutrition Today, 2004, 39, 182-185.	1.0	0
121	Targeting angiogenesis for mammary cancer prevention: factors to consider in experimental design and analysis. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 1173-84.	2.5	3
122	Dietary energy restriction in breast cancer prevention. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 133-142.	2.7	53
123	Mechanisms by which energy restriction inhibits rat mammary carcinogenesis: in vivo effects of corticosterone on cell cycle machinery in mammary carcinomas. Carcinogenesis, 2003, 24, 1225-1231.	2.8	36
124	Effect of energy restriction on cell cycle machinery in 1-methyl-1-nitrosourea-induced mammary carcinomas in rats. Cancer Research, 2003, 63, 1228-34.	0.9	40
125	Semi-automated Method of Quantifying Vasculature of 1-Methyl-1-nitrosourea-induced Rat Mammary Carcinomas Using Immunohistochemical Detection. Journal of Histochemistry and Cytochemistry, 2002, 50, 213-222.	2.5	22
126	Vascular density profile of rat mammary carcinomas induced by 1-methyl-1-nitrosourea: implications for the investigation of angiogenesis. Carcinogenesis, 2002, 23, 847-854.	2.8	13

#	Article	IF	CITATIONS
127	Protection against Cancer by Energy Restriction: All Experimental Approaches Are Not Equal. Journal of Nutrition, 2002, 132, 1047-1049.	2.9	21
128	An experimental paradigm for studying the cellular and molecular mechanisms of cancer inhibition by energy restriction. Molecular Carcinogenesis, 2002, 35, 51-56.	2.7	28
129	Mechanisms of cell cycle arrest by methylseleninic acid. Cancer Research, 2002, 62, 156-64.	0.9	26
130	Mechanisms of energy restriction: effects of corticosterone on cell growth, cell cycle machinery, and apoptosis. Cancer Research, 2002, 62, 5280-7.	0.9	29
131	AlliumChemistry:Â Synthesis, Natural Occurrence, Biological Activity, and Chemistry ofSe-Alk(en)ylselenocysteines and Their γ-Clutamyl Derivatives and Oxidation Products. Journal of Agricultural and Food Chemistry, 2001, 49, 458-470.	5.2	70
132	Molecular mechanisms associated with Se-allylselenocysteine regulation of cell proliferation and apoptosis. Cancer Letters, 2001, 162, 167-173.	7.2	7
133	Selenium in Cancer Prevention: Clinical Issues and Implications. Cancer Investigation, 2001, 19, 540-553.	1.3	40
134	Effect of the aromatase inhibitor vorozole on estrogen and progesterone receptor content of rat mammary carcinomas induced by 1-methyl-1-nitrosourea. Breast Cancer Research and Treatment, 2001, 70, 171-183.	2.5	16
135	Control of Rat Mammary Epithelium Proliferation by Conjugated Linoleic Acid. Nutrition and Cancer, 2001, 39, 233-238.	2.0	39
136	Role of low molecular weight, selenium-containing compounds in human health. , 2001, , 283-297.		4
137	Activity of Se-allylselenocysteine in the presence of methionine ?-lyase on cell growth, DNA integrity, apoptosis, and cell-cycle regulatory molecules. Molecular Carcinogenesis, 2000, 29, 191-197.	2.7	12
138	A Comparison of the Histopathology of Premalignant and Malignant Mammary Gland Lesions Induced in Sexually Immature Rats with those Occurring in the Human. Laboratory Investigation, 2000, 80, 221-231.	3.7	75
139	In vitro effects of Se-allylselenocysteine and Se-propylselenocysteine on cell growth, DNA integrity, and apoptosis. Biochemical Pharmacology, 2000, 60, 1467-1473.	4.4	34
140	Rat models of premalignant breast disease. , 2000, 5, 409-420.		96
141	Classification of premalignant and malignant lesions developing in the rat mammary gland after injection of sexually immature rats with 1-methyl-1-nitrosourea. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 201-210.	2.7	57
142	Effect of Fixation and Epitope Retrieval on BrdU Indices in Mammary Carcinomas. Journal of Histochemistry and Cytochemistry, 2000, 48, 355-362.	2.5	38
143	Effect of energy restriction on tissue size regulation during chemically induced mammary carcinogenesis. Carcinogenesis, 1999, 20, 1721-1726.	2.8	37
144	Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. Carcinogenesis, 1999, 20, 1019-1024.	2.8	155

#	Article	IF	CITATIONS
145	Effect of energy restriction on the expression of cyclin D1 and p27 during premalignant and malignant stages of chemically induced mammary carcinogenesis. , 1999, 24, 241-245.		30
146	Effects of methylselenocysteine on PKC activity, cdk2 phosphorylation and gadd gene expression in synchronized mouse mammary epithelial tumor cells. Cancer Letters, 1999, 146, 135-145.	7.2	83
147	Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis, 1999, 20, 2261-2266.	2.8	207
148	Conjugated Linoleic Acid–Enriched Butter Fat Alters Mammary Gland Morphogenesis and Reduces Cancer Risk in Rats. Journal of Nutrition, 1999, 129, 2135-2142.	2.9	364
149	Mechanisms by which Energy Restriction Inhibits Carcinogenesis. Advances in Experimental Medicine and Biology, 1999, 470, 77-84.	1.6	33
150	X-radiation induces 8-hydroxy-2'-deoxyguanosine formation in vivo in rat mammary gland DNA. Carcinogenesis, 1998, 19, 1319-1321.	2.8	29
151	Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung tumor formation by FGN-1 (sulindac sulfone). Carcinogenesis, 1998, 19, 1353-1356.	2.8	41
152	Temporal sequence of mammary intraductal proliferations, ductal carcinomas in situ and adenocarcinomas induced by 1-methyl-1- nitrosourea in rats. Carcinogenesis, 1998, 19, 2181-2185.	2.8	39
153	Effect of corticosterone administration on mammary gland development and p27 expression and their relationship to the effects of energy restriction on mammary carcinogenesis. Carcinogenesis, 1998, 19, 2101-2106.	2.8	24
154	Pathogenic characterization of 1-methyl-1-nitrosourea-induced mammary carcinomas in the rat. Carcinogenesis, 1998, 19, 223-227.	2.8	24
155	Ovarian hormone dependence of pre-malignant and malignant mammary gland lesions induced in pre-pubertal rats by 1-methyl-1-nitrosourea. Carcinogenesis, 1998, 19, 383-386.	2.8	27
156	Energy availability and mammary carcinogenesis: effects of calorie restriction and exercise. Carcinogenesis, 1997, 18, 1183-1188.	2.8	50
157	Immortalized mouse mammary cells in vivo do not exhibit increased telomerase activity. Carcinogenesis, 1997, 18, 2085-2091.	2.8	13
158	Retention of conjugated linoleic acid in the mammary gland is associated with tumor inhibition during the post-initiation phase of carcinogenesis. Carcinogenesis, 1997, 18, 755-759.	2.8	102
159	Cyclic food restriction, insulin and mammary cell proliferation in the rat. Carcinogenesis, 1997, 18, 2271-2276.	2.8	7
160	Effect of caloric restriction on pre-malignant and malignant stages of mammary carcinogenesis. Carcinogenesis, 1997, 18, 1007-1012.	2.8	77
161	Differential induction of growth arrest inducible genes by selenium compounds. Biochemical Pharmacology, 1997, 53, 921-926.	4.4	93
162	Effects of physical activity and exercise on experimentally-induced mammary carcinogenesis. Breast Cancer Research and Treatment, 1997, 46, 135-141.	2.5	42

#	Article	IF	CITATIONS
163	Gene expression changes associated with chemically induced rat mammary carcinogenesis. Molecular Carcinogenesis, 1997, 20, 204-215.	2.7	84
164	Cyclic Food Restriction Alters Substrate Utilization and Abolishes Protection from Mammary Carcinogenesis in Female Rats1,2. Journal of Nutrition, 1996, 126, 1398-1405.	2.9	30
165	Guidelines on diet, nutrition, and cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. The American Cancer Society 1996 Advisory Committee on Diet, Nutrition, and Cancer Prevention. Ca-A Cancer Journal for Clinicians, 1996, 46, 325-341.	329.8	102
166	A Filter Elution Assay for the Simultaneous Detection of DNA Double and Single Strand Breaks. Analytical Biochemistry, 1996, 235, 227-233.	2.4	11
167	The efficacy of conjugated linoleic acid in mammary cancer prevention is independent of the level or type of fat in the diet. Carcinogenesis, 1996, 17, 1045-1050.	2.8	183
168	Effect of an aqueous extract of selenium-enriched garlic on in vitro markers and in vivo efficacy in cancer prevention. Carcinogenesis, 1996, 17, 1903-1907.	2.8	93
169	Selenium-enriched garlic inhibits the early stage but not the late stage of mammary carcinogenesis. Carcinogenesis, 1996, 17, 1979-1982.	2.8	64
170	Inhibition of Mammary Carcinogenesis Treadmill Exercise. Journal of the National Cancer Institute, 1995, 87, 453-455.	6.3	24
171	Rapid induction of mammary intraductal proliferations, ductal carcinoma in situ and carcinomas by the injection of sexually immature female rats with 1-methyl-1-nitrosourea. Carcinogenesis, 1995, 16, 2407-2412.	2.8	132
172	Exercise intensity dependent inhibition of 1-methyl-l-nitrosourea induced mammary carcinogenesis in female F-344 rats. Carcinogenesis, 1995, 16, 1783-1786.	2.8	48
173	Effect of high-dose, fractionated local irradiation on MNU-induced carcinogenesis in the rat mammary gland. Carcinogenesis, 1995, 16, 649-653.	2.8	5
174	Rasmay mediate mammary cancer promotion by high fat. Nutrition and Cancer, 1995, 23, 283-290.	2.0	22
175	Treatment with chemopreventive agents, difluoromethylornithine and retinyl acetate, results in altered mammary extracellular matrix. Carcinogenesis, 1995, 16, 1787-1794.	2.8	20
176	Effect of timing and duration of dietary conjugated linoleic acid on mammary cancer prevention. Nutrition and Cancer, 1995, 24, 241-247.	2.0	166
177	Cellular and metabolic effects of triphenylselenonium chloride in a mammary cell culture model. Carcinogenesis, 1995, 16, 513-517.	2.8	45
178	Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochemical Pharmacology, 1995, 50, 213-219.	4.4	127
179	Effect of excess dietary iron on the promotion stage of 1-methyl-1- nitrosourea-induced mammary carcinogenesis: pathogenetic characteristics and distribution of iron. Carcinogenesis, 1994, 15, 1567-1570.	2.8	23
180	Comparative effect of inorganic and organic selenocyanate derivatives in mammary cancer chemoprevention. Carcinogenesis, 1994, 15, 187-192.	2.8	108

#	Article	IF	CITATIONS
181	Activity of triphenylselenonium chloride in mammary cancer prevention. Carcinogenesis, 1994, 15, 2879-2882.	2.8	21
182	Antioxidant status and dietary lipid unsaturation modulate oxidative DNA damage. Free Radical Biology and Medicine, 1994, 16, 111-115.	2.9	61
183	Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochemical Pharmacology, 1994, 47, 1531-1535.	4.4	125
184	Comparison of the effects of an organic and an inorganic form of selenium on a mammary carcinoma cell line. Carcinogenesis, 1994, 15, 183-186.	2.8	137
185	Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer, 1994, 74, 1050-1054.	4.1	156
186	Alkaline Elution Analysis of DNA Fragmentation Induced during Apoptosis. Analytical Biochemistry, 1993, 208, 393-396.	2.4	10
187	Effect of conjoint administration of tamoxifen and high-dose radiation on the development of mammary carcinoma. International Journal of Radiation Oncology Biology Physics, 1993, 26, 89-94.	0.8	28
188	Spontaneous Nucleosomal DNA Fragmentation in Murine Leukemic L1210 Cells. Biochemical and Biophysical Research Communications, 1993, 194, 836-841.	2.1	10
189	Evaluation of the inflammatory infiltrate in pouchitis with 111In-labeled granulocytes. Gastroenterology, 1993, 104, 981-988.	1.3	54
190	Effect of carcinogen dose and age at administration on induction of mammary carcinogenesis by 1-methyl-l-nitrosourea. Carcinogenesis, 1992, 13, 1535-1539.	2.8	53
191	Effect of methylated forms of selenium on cell viability and the induction of DNA strand breakage. Biochemical Pharmacology, 1992, 43, 1137-1141.	4.4	68
192	Effect of Amount and Type of Exercise on Experimentally Induced Breast Cancer. Advances in Experimental Medicine and Biology, 1992, 322, 61-71.	1.6	9
193	Changes in ornithine decarboxylase activity and polyamine levels in response to eight different forms of selenium. Journal of Inorganic Biochemistry, 1991, 44, 283-292.	3.5	3
194	Analysis of chemoprevention experiments: The indefinite censoring model. Mathematical and Computer Modelling, 1991, 15, 65-75.	2.0	0
195	Temporal changes in tissue glutathione in response to chemical form, dose, and duration of selenium treatment. Biological Trace Element Research, 1991, 30, 163-173.	3.5	22
196	Effect of deficiencies of selenium and vitamin E alone or in combination on the induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis, 1991, 12, 2175-2179.	2.8	17
197	Effect of dietary iron deficiency or excess on the induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis, 1991, 12, 111-114.	2.8	83
198	Axonal damage in Crohn's disease is frequent, but non-specific. Journal of Pathology, 1990, 161, 301-311.	4.5	21

#	Article	IF	CITATIONS
199	Differences in selenium concentrations in target tissues and their relevance to its anticarcinogenicity. Nutrition Research, 1990, 10, 81-89.	2.9	6
200	New Approaches to Cancer Chemoprevention With Difluoromethylornithine and Selenite. Journal of the National Cancer Institute, 1989, 81, 839-843.	6.3	16
201	Beware of hemolytic uremic syndrome presenting as colorectal disease in adults. Diseases of the Colon and Rectum, 1989, 32, 426-428.	1.3	9
202	Effect of Roux-en-Y biliary diversion on Campylobacter pylori. Gastroenterology, 1989, 97, 958-964.	1.3	40
203	Carcinoma developing in ileostomies after 25 or more years. Gastroenterology, 1988, 95, 205-208.	1.3	67
204	Vanadium complexes of transferrin and ferritin in the rat. Biochimica Et Biophysica Acta - General Subjects, 1986, 884, 84-92.	2.4	75
205	Effect of D,L-2-difluoromethylornithine and endocrine manipulation on the induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis, 1986, 7, 2003-2006.	2.8	29
206	Chemoprevention of Mammary Carcinogenesis: A Comparative Review of the Efficacy of a Polyamine Antimetabolite, Retinoids, and Selenium678. Journal of the National Cancer Institute, 1986, 77, 595-598.	6.3	18
207	Effect of tamoxifen and D,L-2-difluoromethylornithine on the growth, ornithine decarboxylase activity and polyamine content of mammary carcinomas induced by 1-methyl-1-nitrosourea. Carcinogenesis, 1986, 7, 837-840.	2.8	21
208	Screening procedures for identifying patients after gastric operations at high risk of developing premalignant histological changes. World Journal of Surgery, 1985, 9, 606-610.	1.6	1
209	Effect of D,L-α-difluoromethylornithine on murine mammary carcinogenesis. Carcinogenesis, 1984, 5, 1649-1651.	2.8	45
210	Dietary vanadyl(IV) sulfate inhibits chemically-induced mammary carcinogenesis. Carcinogenesis, 1984, 5, 849-851.	2.8	109
211	Selenium as an anticarcinogen. Journal of Agricultural and Food Chemistry, 1984, 32, 422-425.	5.2	25
212	Limitations of biopsy in preoperative assessment of villous papilloma. Diseases of the Colon and Rectum, 1981, 24, 259-262.	1.3	27
213	Natural history of perianal Crohn's disease. American Journal of Surgery, 1980, 140, 642-644.	1.8	212
214	Carcinoma in a rectovaginal fistula in a patient with Crohn's disease. American Journal of Surgery, 1980, 140, 462-463.	1.8	66
215	Effect of graded dietary levels of selenium on tracheal carcinomas induced by 1-methyl-1-nitrosourea. Cancer Letters, 1979, 7, 215-219.	7.2	39
216	Cytotaxonomic Observations in Loasaceae Subfamily Loasoideae. Systematic Botany, 1977, 2, 28.	0.5	14

1

#	Article	IF	CITATIONS
217	Effect of Dietary Copper, Manganese, and Zinc on Nitrogen Equilibrium and Mineral Distribution Subsequent to Trauma in Mature Rats. Journal of Nutrition, 1976, 106, 1421-1428.	2.9	4

218 Effect of pulse consumption on obesity and the metagenome. , 0, , .