
James D Zieske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4181824/publications.pdf Version: 2024-02-01

MES D ZIE

#	Article	IF	CITATIONS
1	Extracellular Vesicles in the Cornea: Insights from Other Tissues. Analytical Cellular Pathology, 2021, 2021, 1-12.	0.7	20
2	FAK Inhibition Attenuates Corneal Fibroblast Differentiation In Vitro. Biomolecules, 2021, 11, 1682.	1.8	16
3	Extracellular Vesicles and Cell–Cell Communication in the Cornea. Anatomical Record, 2020, 303, 1727-1734.	0.8	28
4	Biology of corneal fibrosis: soluble mediators, integrins, and extracellular vesicles. Eye, 2020, 34, 271-278.	1.1	20
5	Extracellular Vesicles Secreted by Corneal Epithelial Cells Promote Myofibroblast Differentiation. Cells, 2020, 9, 1080.	1.8	26
6	Modeling the cornea in 3-dimensions: Current and future perspectives. Experimental Eye Research, 2020, 197, 108127.	1.2	13
7	Characterization of Tear Immunoglobulins in a Small-Cohort of Keratoconus Patients. Scientific Reports, 2020, 10, 9426.	1.6	14
8	Transient Mitomycin C-treatment of human corneal epithelial cells and fibroblasts alters cell migration, cytokine secretion, and matrix accumulation. Scientific Reports, 2019, 9, 13905.	1.6	12
9	Epidermal Growth Factor Stimulates Transforming Growth Factor-Beta Receptor Type II Expression In Corneal Epithelial Cells. Scientific Reports, 2019, 9, 8079.	1.6	20
10	3D in vitro model for human corneal endothelial cell maturation. Experimental Eye Research, 2019, 184, 183-191.	1.2	10
11	Corneal Epithelial–Stromal Fibroblast Constructs to Study Cell–Cell Communication in Vitro. Bioengineering, 2019, 6, 110.	1.6	23
12	Initiation of fibrosis in the integrin Î ^r vβ6 knockout mice. Experimental Eye Research, 2019, 180, 23-28.	1.2	12
13	Hypoxia modulates the development of a corneal stromal matrix model. Experimental Eye Research, 2018, 170, 127-137.	1.2	16
14	Inhibition of Human Corneal Myofibroblast Formation. , 2018, 59, 3511.		11
15	Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization. Scientific Reports, 2017, 7, 40548.	1.6	82
16	Development of wound healing models to study TGFβ3's effect on SMA. Experimental Eye Research, 2017, 161, 52-60.	1.2	17
17	Mouse Models of Corneal Scarring. Methods in Molecular Biology, 2017, 1627, 117-122.	0.4	6
18	PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal		11

Fibroblasts. , 2017, 58, 1179.

JAMES D ZIESKE

#	Article	IF	CITATIONS
19	TGF-β-target genes are differentially regulated in corneal epithelial cells and fibroblasts. New Frontiers in Ophthalmology (London), 2017, 3, .	0.1	10
20	Article Commentary: Cornea as a Model for Testing CTGF-Based Antiscarring Drugs. Bone and Tissue Regeneration Insights, 2016, 7, BTRI.S19954.	3.0	3
21	Molecular insights on the effect of TGF-β1/-β3 in human corneal fibroblasts. Experimental Eye Research, 2016, 146, 233-241.	1.2	41
22	Human Corneal Fibroblast Pattern Evolution and Matrix Synthesis on Mechanically Biased Substrates. Tissue Engineering - Part A, 2016, 22, 1204-1217.	1.6	16
23	Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Experimental Eye Research, 2016, 146, 361-369.	1.2	27
24	Tear metabolite changes in keratoconus. Experimental Eye Research, 2015, 132, 1-8.	1.2	71
25	Matricellular Protein Thrombospondins: Influence on Ocular Angiogenesis, Wound Healing and Immuneregulation. Current Eye Research, 2014, 39, 759-774.	0.7	44
26	ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature, 2014, 511, 353-357.	13.7	217
27	Wounding the cornea to learn how it heals. Experimental Eye Research, 2014, 121, 178-193.	1.2	119
28	Reversal of fibrosis by TGF-β3 in a 3D inÂvitro model. Experimental Eye Research, 2014, 124, 31-36.	1.2	50
29	A Role for Topographic Cues in the Organization of Collagenous Matrix by Corneal Fibroblasts and Stem Cells. PLoS ONE, 2014, 9, e86260.	1.1	61
30	Role of Thrombospondin-1 in Repair of Penetrating Corneal Wounds. , 2013, 54, 6262.		43
31	Nerve Growth Factor Promotes Corneal Epithelial Migration by Enhancing Expression of Matrix Metalloprotease-9. , 2013, 54, 3880.		70
32	TGF-β3 Stimulates Stromal Matrix Assembly by Human Corneal Keratocyte-Like Cells. , 2013, 54, 6612.		39
33	Retinal Laser Burn-Induced Neuropathy Leads to Substance P-Dependent Loss of Ocular Immune Privilege. Journal of Immunology, 2012, 189, 1237-1242.	0.4	33
34	Novel in Vitro Model for Keratoconus Disease. Journal of Functional Biomaterials, 2012, 3, 760-775.	1.8	54
35	Disorganized collagen scaffold interferes with fibroblast mediated deposition of organized extracellular matrix in vitro. Biotechnology and Bioengineering, 2012, 109, 2683-2698.	1.7	28
36	Localization of thrombospondin-1 and myofibroblasts during corneal wound repair. Experimental Eye Research, 2011, 93, 534-540.	1.2	47

James D Zieske

#	Article	IF	CITATIONS
37	Spontaneous Bacterial Keratitis in CD36 Knockout Mice. , 2011, 52, 256.		9
38	Self-Assembled Matrix by Umbilical Cord Stem Cells. Journal of Functional Biomaterials, 2011, 2, 213-229.	1.8	23
39	MMP9 cleavage of the β4 integrin ectodomain leads to recurrent epithelial erosions in mice. Journal of Cell Science, 2011, 124, 2666-2675.	1.2	64
40	αVβ6 Integrin Promotes Corneal Wound Healing. , 2011, 52, 8505.		40
41	Human Corneal Fibrosis: An In Vitro Model. , 2010, 51, 1382.		149
42	Prelude to corneal tissue engineering – Gaining control of collagen organization. Progress in Retinal and Eye Research, 2008, 27, 549-577.	7.3	165
43	BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Experimental Eye Research, 2008, 87, 478-486.	1.2	56
44	Corneal-Tissue Replacement. , 2007, , 1025-1047.		12
45	Examination of the restoration of epithelial barrier function following superficial keratectomy. Experimental Eye Research, 2007, 84, 32-38.	1.2	29
46	Morphologic Characterization of Organized Extracellular Matrix Deposition by Ascorbic Acid–Stimulated Human Corneal Fibroblasts. , 2007, 48, 4050.		168
47	Wound Healing in the Cornea. Cornea, 2005, 24, 509-522.	0.9	378
48	In Vivo and In Vitro Expression of Connexins in the Human Corneal Epithelium. , 2005, 46, 1957.		41
49	Effect of Wound Type on Smad 2 and 4 Translocation. , 2005, 46, 2362.		32
50	The Corneal Epithelial Stem Cell Niche. Ocular Surface, 2005, 3, 15-26.	2.2	77
51	Corneal development associated with eyelid opening. International Journal of Developmental Biology, 2004, 48, 903-911.	0.3	148
52	TAT-Mediated Protein Transduction into Human Corneal Epithelial Cells: p15INK4bInhibits Cell Proliferation and Stimulates Cell Migration. , 2004, 45, 1804.		9
53	Transduction of functionally active TAT fusion proteins into cornea. Experimental Eye Research, 2004, 78, 997-1005.	1.2	15
54	Cell cycle regulators at the ocular surface. Experimental Eye Research, 2004, 78, 447-456.	1.2	28

JAMES D ZIESKE

#	Article	IF	CITATIONS
55	Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Survey of Ophthalmology, 2004, 49, 576-602.	1.7	59
56	Human Corneal Organotypic Cultures. Cutaneous and Ocular Toxicology, 2004, 23, 19-28.	0.3	12
57	Effect of ectopic epithelial tissue within the stroma on keratocyte apoptosis, mitosis, and myofibroblast transformation. Experimental Eye Research, 2003, 76, 193-201.	1.2	36
58	Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Experimental Eye Research, 2003, 77, 211-217.	1.2	81
59	Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Experimental Eye Research, 2003, 76, 71-87.	1.2	374
60	Molecular Mechanisms Controlling the Fibrotic Repair Phenotype in Cornea: Implications for Surgical Outcomes. , 2003, 44, 4237.		210
61	Extracellular Matrix and Matrix Metalloproteinase Changes in Human Corneas After Complicated Laser-Assisted In Situ Keratomileusis (LASIK). Cornea, 2002, 21, 95-100.	0.9	29
62	Changes in connexin43 in early ocular surface development. Current Eye Research, 2002, 24, 430-438.	0.7	28
63	Kinetics of Keratocyte Proliferation in Response to Epithelial Debridement. Experimental Eye Research, 2001, 72, 33-39.	1.2	158
64	A role for MAP kinase in regulating ectodomain shedding of APLP2 in corneal epithelial cells. American Journal of Physiology - Cell Physiology, 2001, 281, C603-C614.	2.1	24
65	Extracellular matrix and wound healing. Current Opinion in Ophthalmology, 2001, 12, 237-241.	1.3	100
66	Expression of cyclin-dependent kinase inhibitors during corneal wound repair. Progress in Retinal and Eye Research, 2000, 19, 257-270.	7.3	46
67	Glucose Transporter 1 Expression in Corneal Wound Repair under High Serum Glucose Level. Japanese Journal of Ophthalmology, 2000, 44, 470-474.	0.9	16
68	Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. Current Eye Research, 2000, 21, 608-615.	0.7	38
69	Regulation of Conjunctival Goblet Cell Secretion by Ca2+and Protein Kinase C. Experimental Eye Research, 2000, 71, 619-628.	1.2	34
70	ZO1 in Corneal Epithelium: Association to the Zonula Occludens and Adherens Junctions. Experimental Eye Research, 1997, 64, 11-20.	1.2	126
71	Vasoactive Intestinal Peptide-Stimulated Glycoconjugate Secretion from Conjunctival Goblet Cells. Experimental Eye Research, 1996, 63, 27-33.	1.2	57
72	Glucose Transporter 1 Expression is Enhanced During Corneal Epithelial Wound Repair. Experimental Eye Research, 1996, 63, 649-659.	1.2	41

JAMES D ZIESKE

#	Article	IF	CITATIONS
73	Stimulation of goblet cell mucous secretion by activation of nerves in rat conjunctiva. Current Eye Research, 1995, 14, 985-992.	0.7	67
74	Localization of nerves adjacent to goblet cells in rat conjunctiva. Current Eye Research, 1995, 14, 993-1000.	0.7	69
75	Perpetuation of stem cells in the eye. Eye, 1994, 8, 163-169.	1.1	106
76	Basement Membrane Assembly and Differentiation of Cultured Corneal Cells: Importance of Culture Environment and Endothelial Cell Interaction. Experimental Cell Research, 1994, 214, 621-633.	1.2	175
77	Effect of Epidermal Growth Factor, Hepatocyte Growth Factor, and Keratinocyte Growth Factor, on Proliferation, Motility and Differentiation of Human Corneal Epithelial Cells. Experimental Eye Research, 1994, 59, 665-678.	1.2	219
78	Corneal Wound Healing and Fibronectin. International Ophthalmology Clinics, 1993, 33, 149-163.	0.3	29
79	α-Enolase is restricted to basal cells of stratified squamous epithelium. Developmental Biology, 1992, 151, 18-26.	0.9	67
80	Reversible microsomal binding of hepatic aldolase. Biochimica Et Biophysica Acta - Biomembranes, 1981, 661, 221-229.	1.4	9