Benjamin Raymond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4181579/publications.pdf

Version: 2024-02-01

52 papers 1,956 citations

236833 25 h-index 42 g-index

56 all docs 56
docs citations

56 times ranked 1987 citing authors

#	Article	IF	CITATIONS
1	Passage and the evolution of virulence in invertebrate pathogens: Fundamental and applied perspectives. Journal of Invertebrate Pathology, 2022, 187, 107692.	1.5	10
2	Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among <i>Bacillus cereus</i> clades. Molecular Ecology, 2022, 31, 3584-3597.	2.0	4
3	Relative efficacy of biological control and cultural management for control of mollusc pests in cool climate vineyards. Biocontrol Science and Technology, 2021, 31, 725-738.	0.5	4
4	Function is a better predictor of plant rhizosphere community membership than <scp>16S</scp> phylogeny. Environmental Microbiology, 2021, 23, 6089-6103.	1.8	3
5	Controlling insecticide resistant clones of the aphid, Myzus persicae, using the entomopathogenic fungus Akanthomyces muscarius: Fitness cost of resistance under pathogen challenge. Pest Management Science, 2021, 77, 5286-5293.	1.7	8
6	Strong Environment-Genotype Interactions Determine the Fitness Costs of Antibiotic Resistance <i>In Vitro</i> and in an Insect Model of Infection. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	3
7	Optimal Response to Quorum-Sensing Signals Varies in Different Host Environments with Different Pathogen Group Size. MBio, 2020, 11 , .	1.8	5
8	Divergence in environmental adaptation between terrestrial clades of the <i>Bacillus cereus</i> group. FEMS Microbiology Ecology, 2020, 97, .	1.3	7
9	Crystal toxins and the volunteer's dilemma in bacteria. Journal of Evolutionary Biology, 2019, 32, 310-319.	0.8	11
10	Bacteria from natural populations transfer plasmids mostly towards their kin. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191110.	1.2	45
11	Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evolutionary Applications, 2019, 12, 1079-1091.	1.5	74
12	Shifts along the parasite–mutualist continuum are opposed by fundamental trade-offs. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190236.	1.2	13
13	Targeting antibiotic resistant bacteria with phage reduces bacterial density in an insect host. Biology Letters, 2019, 15, 20180895.	1.0	7
14	Rhizobacterial Community Assembly Patterns Vary Between Crop Species. Frontiers in Microbiology, 2019, 10, 581.	1.5	42
15	Aseptic Rearing and Infection with Gut Bacteria Improve the Fitness of Transgenic Diamondback Moth, Plutella xylostella. Insects, 2019, 10, 89.	1.0	16
16	Biofilms facilitate cheating and social exploitation of \hat{l}^2 -lactam resistance in Escherichia coli. Npj Biofilms and Microbiomes, 2019, 5, 36.	2.9	27
17	Negative frequency dependent selection on plasmid carriage and low fitness costs maintain extended spectrum \hat{l}^2 -lactamases in Escherichia coli. Scientific Reports, 2019, 9, 17211.	1.6	25
18	The application of selfâ€limiting transgenic insects in managing resistance in experimental metapopulations. Journal of Applied Ecology, 2019, 56, 688-698.	1.9	8

#	Article	IF	CITATIONS
19	HTâ€SuperSAGE of the gut tissue of a Vip3Aaâ€resistantHeliothis virescens(Lepidoptera: Noctuidae) strain provides insights into the basis of resistance. Insect Science, 2019, 26, 479-498.	1.5	5
20	Lineageâ€specific plasmid acquisition and the evolution of specialized pathogens in <i>Bacillus thuringiensis</i> and the <i>Bacillus cereus</i> group. Molecular Ecology, 2018, 27, 1524-1540.	2.0	43
21	Combining the highâ€dose/refuge strategy and selfâ€imiting transgenic insects in resistance management—A test in experimental mesocosms. Evolutionary Applications, 2018, 11, 727-738.	1.5	12
22	An appeal for a more evidence based approach to biopesticide safety in the EU. FEMS Microbiology Ecology, 2018, 94, .	1.3	6
23	The Biology, Ecology and Taxonomy of Bacillus thuringiensis and Related Bacteria. , 2017, , 19-39.		9
24	Comparative Genomics of $\langle i \rangle$ Bacillus thuringiensis $\langle i \rangle$ Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts. MBio, 2017, 8, .	1.8	43
25	In defence of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA. FEMS Microbiology Ecology, 2017, 93, .	1.3	73
26	Ecological and genetic determinants of plasmid distribution in <scp><i>E</i></scp> <i>scherichia coliEnvironmental Microbiology, 2016, 18, 4230-4239.</i>	1.8	16
27	Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes. Evolutionary Applications, 2016, 9, 462-470.	1.5	15
28	Live to cheat another day: bacterial dormancy facilitates the social exploitation of \hat{l}^2 -lactamases. ISME Journal, 2016, 10, 778-787.	4.4	79
29	Bacterial Cooperation Causes Systematic Errors in Pathogen Risk Assessment due to the Failure of the Independent Action Hypothesis. PLoS Pathogens, 2015, 11, e1004775.	2.1	26
30	Making pathogens sociable: The emergence of high relatedness through limited host invasibility. ISME Journal, 2015, 9, 2315-2323.	4.4	20
31	Division of labour and terminal differentiation in a novel <i>Bacillus thuringiensis</i> strain. ISME Journal, 2015, 9, 286-296.	4.4	26
32	Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance. BMC Biology, 2014, 12, 48.	1.7	36
33	The Social Biology of Quorum Sensing in a Naturalistic Host Pathogen System. Current Biology, 2014, 24, 2417-2422.	1.8	54
34	Cooperation and the evolutionary ecology of bacterial virulence: The <i>Bacillus cereus</i> group as a novel study system. BioEssays, 2013, 35, 706-716.	1.2	60
35	The impact of strain diversity and mixed infections on the evolution of resistance to <i>Bacillus thuringiensis</i> . Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131497.	1.2	11
36	The Dynamics of Cooperative Bacterial Virulence in the Field. Science, 2012, 337, 85-88.	6.0	112

#	Article	IF	CITATIONS
37	Antagonistic competition moderates virulence in Bacillus thuringiensis. Ecology Letters, 2011, 14, 765-772.	3.0	55
38	Environmental Factors Determining the Epidemiology and Population Genetic Structure of the Bacillus cereus Group in the Field. PLoS Pathogens, 2010, 6, e1000905.	2.1	94
39	Bacillus thuringiensis: an impotent pathogen?. Trends in Microbiology, 2010, 18, 189-194.	3.5	297
40	Impact of intraguild predation on parasitoid foraging behaviour. Ecological Entomology, 2010, 35, 183-189.	1.1	31
41	A midâ€gut microbiota is not required for the pathogenicity of <i>Bacillus thuringiensis</i> to diamondback moth larvae. Environmental Microbiology, 2009, 11, 2556-2563.	1.8	82
42	Moderation of pathogen-induced mortality: the role of density in <i>Bacillus thuringiensis</i> virulence. Biology Letters, 2009, 5, 218-220.	1.0	12
43	Lethal pathogens, non-lethal synergists and the evolutionary ecology of resistance. Journal of Theoretical Biology, 2008, 254, 339-349.	0.8	3
44	Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Journal of Invertebrate Pathology, 2008, 98, 307-313.	1.5	35
45	Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Journal of Invertebrate Pathology, 2008, 99, 103-111.	1.5	31
46	Competition and reproduction in mixed infections of pathogenic and non-pathogenic Bacillus spp Journal of Invertebrate Pathology, 2007, 96, 151-155.	1.5	38
47	Host plant and population determine the fitness costs of resistance to Bacillus thuringiensis. Biology Letters, 2007, 3, 83-86.	1.0	45
48	Exploiting pathogens and their impact on fitness costs to manage the evolution of resistance to Bacillus thuringiensis. Journal of Applied Ecology, 2007, 44, 768-780.	1.9	59
49	Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1519-1524.	1.2	74
50	The role of food plant and pathogen-induced behaviour in the persistence of a nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2005, 88, 49-57.	1.5	38
51	Genetic and Biochemical Characterization of Field-Evolved Resistance to Bacillus thuringiensis Toxin Cry1Ac in the Diamondback Moth, Plutella xylostella. Applied and Environmental Microbiology, 2004, 70, 7010-7017.	1.4	56
52	Host shifting by Operophtera brumata into novel environments leads to population differentiation in life-history traits. Ecological Entomology, 2003, 28, 604-612.	1.1	42