Feng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4180333/publications.pdf Version: 2024-02-01

		394421	395702
37	1,104	19	33
papers	citations	h-index	g-index
07	07	07	1050
37	37	37	1259
all docs	docs citations	times ranked	citing authors

FENC THENC

#	Article	IF	CITATIONS
1	Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chemical Engineering Journal, 2020, 390, 124513.	12.7	134
2	Hydrothermal preparation and optical properties of orientation-controlled WO ₃ nanorod arrays on ITO substrates. CrystEngComm, 2013, 15, 277-284.	2.6	96
3	Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials. Construction and Building Materials, 2018, 190, 896-909.	7.2	89
4	Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution. Advanced Powder Technology, 2020, 31, 2699-2710.	4.1	60
5	Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor. Journal of Alloys and Compounds, 2019, 772, 933-942.	5.5	55
6	Hydrothermal preparation of WO ₃ nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. Journal of Materials Chemistry C, 2015, 3, 7612-7620.	5.5	45
7	Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance. Chemical Engineering Journal, 2020, 381, 122698.	12.7	44
8	Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. Journal of Power Sources, 2018, 404, 47-55.	7.8	42
9	Hydrothermal preparation, growth mechanism and supercapacitive properties of WO ₃ nanorod arrays grown directly on a Cu substrate. CrystEngComm, 2016, 18, 3891-3904.	2.6	39
10	Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo. Journal of Cleaner Production, 2021, 325, 129322.	9.3	39
11	Effects of morphology, size and crystallinity on the electrochromic properties of nanostructured WO ₃ films. CrystEngComm, 2015, 17, 5440-5450.	2.6	38
12	Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors. Journal of Alloys and Compounds, 2019, 778, 603-611.	5.5	34
13	Effect of substrate pre-treatment on controllable synthesis of hexagonal WO3 nanorod arrays and their electrochromic properties. CrystEngComm, 2013, 15, 5828.	2.6	32
14	Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors. Electrochimica Acta, 2020, 334, 135641.	5.2	32
15	Symmetric supercapacitors composed of ternary metal oxides (NiO/V2O5/MnO2) nanoribbon electrodes with high energy storage performance. Chemical Engineering Journal, 2021, 426, 131804.	12.7	31
16	Inorganic-organic gel electrolytes with 3D cross-linking star-shaped structured networks for lithium ion batteries. Chemical Engineering Journal, 2020, 393, 124708.	12.7	29
17	Hydrothermal synthesis of mixtures of NaA zeolite and sodalite from Ti-bearing electric arc furnace slag. RSC Advances, 2016, 6, 8358-8366.	3.6	26
18	V ₂ O ₅ nanobelt arrays with controllable morphologies for enhanced performance supercapacitors. CrystEngComm, 2017, 19, 6412-6424.	2.6	23

Feng Zheng

#	Article	IF	CITATIONS
19	Tertiary structure of cactus-like WO 3 spheres self-assembled on Cu foil for supercapacitive electrode materials. Journal of Alloys and Compounds, 2017, 712, 345-354.	5.5	21
20	Preparation and supercapacitive property of molybdenum disulfide (MoS2) nanoflake arrays- tungsten trioxide (WO3) nanorod arrays composite heterojunction: A synergistic effect of one-dimensional and two-dimensional nanomaterials. Electrochimica Acta, 2018, 263, 409-416.	5.2	21
21	Effect of substrate pre-treatment on microstructure and enhanced electrochromic properties of WO ₃ nanorod arrays. RSC Advances, 2015, 5, 106182-106190.	3.6	20
22	Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances. Journal of Environmental Management, 2020, 261, 110197.	7.8	20
23	Coating ultra-thin TiN layer onto LiNi0.8Co0.1Mn0.1O2 cathode material by atomic layer deposition for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 888, 161594.	5.5	20
24	Fabrication of Mo-Doped WO3 Nanorod Arrays on FTO Substrate with Enhanced Electrochromic Properties. Materials, 2018, 11, 1627.	2.9	16
25	Effective utilization of extracted titanium tailing to prepare high performance glass-ceramic and their formation mechanism. Ceramics International, 2021, 47, 17391-17399.	4.8	16
26	Hydrothermal preparation of MoS 2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochimica Acta, 2017, 227, 101-109.	5.2	15
27	Synthesis of potassium hexatitanate whiskers with high thermal stability from Ti-bearing electric arc furnace molten slag. Ceramics International, 2016, 42, 11294-11302.	4.8	12
28	V2O5@RuO2 core–shell heterojunction nano-arrays as electrode material for supercapacitors. Chemical Engineering Journal, 2022, 446, 136922.	12.7	12
29	Utilization of residual heat to prepare high performance foamed glass-ceramic from blast furnace slag and its reinforce mechanism. Chemical Engineering Research and Design, 2021, 156, 391-404.	5.6	10
30	Facile preparation of porous single crystal NiO nanoflake array directly grown on nickel foam for supercapacitive electrode material. Journal of Alloys and Compounds, 2022, 913, 165280.	5.5	9
31	Structural changes in hexagonal WO3 under high pressure. Journal of Alloys and Compounds, 2019, 797, 1013-1017.	5.5	8
32	Controllable synthesis of nanorod/nanodisk TiO2 from titanium-containing electric furnace molten slag. Rare Metals, 2015, 34, 267-275.	7.1	6
33	Preparation and UV property of size-controlled monodisperse nickel nanoparticles (<10Ânm) by reductive method. Rare Metals, 2013, 32, 179-185.	7.1	5
34	Preparation of stainless steel mesh-supported ZnO and graphene/ZnO nanorod arrays with high photocatalytic performance. Journal of Iron and Steel Research International, 2021, 28, 874-888.	2.8	3
35	Separation and comprehensive utilization of valuable elements in Ti-bearing electric arc furnace molten slag. Journal of Iron and Steel Research International, 2018, 25, 487-496.	2.8	1
36	Aerosol particles with NaCl-inlay in coastal haze-fog episodes. Air Quality, Atmosphere and Health, 2022, 15, 59-71.	3.3	1

#	Article	IF	CITATIONS
37	Hybrids gel electrolytes with pending polyhedral oligomeric silsesquioxane toward improving interfacial stability for lithium ion batteries. Journal of Materials Research, 0, , 1.	2.6	0