Wade H Powell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4180235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and β-naphthoflavone binding. Gene, 2001, 278, 223-234.	2.2	151
2	Identification and Functional Characterization of Two Highly Divergent Aryl Hydrocarbon Receptors (AHR1 and AHR2) in the TeleostFundulus heteroclitus. Journal of Biological Chemistry, 1999, 274, 33814-33824.	3.4	146
3	Regulatory Interactions among Three Members of the Vertebrate Aryl Hydrocarbon Receptor Family: AHR Repressor, AHR1, and AHR2. Journal of Biological Chemistry, 2002, 277, 6949-6959.	3.4	119
4	Aryl Hydrocarbon Receptors in the Frog Xenopus laevis: Two AhR1 Paralogs Exhibit Low Affinity for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD). Toxicological Sciences, 2005, 88, 60-72.	3.1	58
5	Functional Diversity of Vertebrate ARNT Proteins: Identification of ARNT2 as the Predominant Form of ARNT in the Marine Teleost,Fundulus heteroclitus. Archives of Biochemistry and Biophysics, 1999, 361, 156-163.	3.0	53
6	Identification and functional characterization of hypoxia-inducible factor 2? from the estuarine teleost,Fundulus heteroclitus: Interaction of HIF-2? with two ARNT2 splice variants. The Journal of Experimental Zoology, 2002, 294, 17-29.	1.4	44
7	Responsiveness of a Xenopus laevis cell line to the aryl hydrocarbon receptor ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chemico-Biological Interactions, 2010, 183, 202-211.	4.0	28
8	Specific Ligand Binding Domain Residues Confer Low Dioxin Responsiveness to AHR1β of <i>Xenopus laevis</i> . Biochemistry, 2013, 52, 1746-1754.	2.5	22
9	Cloning and analysis of the CYP1A promoter from the atlantic killifish (Fundulus heteroclitus). Marine Environmental Research, 2004, 58, 119-124.	2.5	20
10	ARNT gene multiplicity in amphibians: Characterization of arnt2 from the frogXenopus laevis. The Journal of Experimental Zoology, 2003, 300B, 48-57.	1.4	17
11	An Aryl Hydrocarbon Receptor Repressor from Xenopus laevis: Function, Expression, and Role in Dioxin Responsiveness during Frog Development. Toxicological Sciences, 2008, 104, 124-134.	3.1	17
12	Induction of cytochrome P450 family 1 mRNAs and activities in a cell line from the frog Xenopus laevis. Aquatic Toxicology, 2012, 114-115, 165-172.	4.0	15
13	An Aryl Hydrocarbon Receptor from the Salamander <i>Ambystoma mexicanum</i> Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo <i>-p</i> -dioxin. Environmental Science & Technology, 2015, 49, 6993-7001.	10.0	13
14	Dioxin Exposure Alters Molecular and Morphological Responses to Thyroid Hormone in Xenopus laevis Cultured Cells and Prometamorphic Tadpoles. Toxicological Sciences, 2018, 161, 196-206.	3.1	12
15	Developmental differences in elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during Xenopus laevis development. Marine Environmental Research, 2006, 62, S34-S37.	2.5	8
16	Subfunctionalization of Paralogous Aryl Hydrocarbon Receptors from the Frog <i>Xenopus Laevis</i> : Distinct Target Genes and Differential Responses to Specific Agonists in a Single Cell Type. Toxicological Sciences, 2017, 155, 337-347.	3.1	5
17	An aryl hydrocarbon receptor from the caecilian Gymnopis multiplicata suggests low dioxin affinity in the ancestor of all three amphibian orders. General and Comparative Endocrinology, 2020, 299, 113592.	1.8	3
18	Dioxin Disrupts Thyroid Hormone and Glucocorticoid Induction of <i>klf9</i> , a Master Regulator of Frog Metamorphosis. Toxicological Sciences, 2022, 187, 150-161.	3.1	2

#	Article	IF	CITATIONS
19	Glutamic acid-371 of the barnase homology domain in RNA polymerase II is not required for SII-activated RNA cleavage. Molecular Genetics and Genomics, 1997, 253, 507-511.	2.4	0